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I DECONVOLUTION METHODS FOR MULTIPLE DETECTORS

INTRODUCTION

I
Deconvolution of a single convolution equation is

usually an ill-posed problem. This has been sufficiently

illustrated in the literature. The shortcomings of linear

and of non-linear deconvolution methods can be found, for
C

instance, in the very clear review paperj-3. Advances in

Ithe theory of holomorphic functions of several complex
Ivariables led Berenstein, Taylor and Yger to realize that

systems of convolution equations could be deconvolved

exactly, thus avoiding the above ill-posedness. Their

preliminary papers eventually led to this project. The

Ipractical interest of this observation is that whenever such
*a set of convolution equations represents a set of physically

realizable devices (e.g. transducers, sensors) then one has,

by use of a digitally implemented inverse, essentially an

arbitrary bandwidth device. Let us make these ideas exact by

recalling the following definitions and deconvoluJ-0:, scheme.

Let W1 ,-.,Pm be a collection of distributions of

compact support in R" ("convolvers"). Their Fourier

transforms pJ J(z) are holomorphic functions of n complex

variable in the Paley-Wiener class. We say that 0,.,

are strongly coprime if there are constants E>O, C>O such

that for every 7 C C:

I1
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E 1 (zj > C exp (-C f{log (JI jz + I mz

I |J -I

In that case, one can prove the existence of

"deconvolvers" V,-...,Vm  That is, distributions of

I compact support such that

I +* Vl +  + *m = .

Once this V have been explicitly found, and herein lies the

difficulty we set out to solve, one has the following scheme

I to determine an unknown signal 0

sampling

* & noi1seI

A very thorough discussion of the meaning of this

scheme, and its implementation in the l-d case, can be found

in the final report to a previous ARO supported project [4].

In this project we set ourselves the following tasks:

(i) find explicit and, relatively easy, formulas for

the deconvolvers Vl,... I m  in the l-d and 2-d

situations.

I (ii) show that in the above deconvolution scheme the

overall system, in the presence of noise, is

entirely dependent on the sampling rate and noise

characteristics, i.e. no "inherent" bandwidth

*2
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I limitations. This means to show that the above

block diagram behaves like

* - average over small detector =

I (iii) construct 1-d simulations of the deconvolution

scheme to show its feasibility beyond purely

theoretical considerations.

These three objectives have all been accomplished and

documented as it will be explained now. Furthermore, the

payoff of the powerful techniques developed for these

questions has also taken place in two other areas: explicit

solution of algebraic equations and their complexity, and the

local Pompeiu problem, these will be discussed below.

First of all, we have two schemes to find

deconvolvers. An analytic one is presented in Chapter 1

where everything depends on the following identity

illustrated for the 2-d case with three convolvers:I
2 3

u{f) J(z ). 3 (0

z]-i z2-C2

J (0; a Jacoblan determinant of ;1 p2 at C

3

C(Zmmmm u mlmlm mlll
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I Here u can be taken as a nollifier of small support

and the estimate * of the signal * will then be

4, = v1* *1 + ... + V 3*3'

where 4 J = * 4 + noise) *u = "smoothened" data. The

resolution level wilj just correspond to the sampling rate.

This chapter has appeared in print in (5].

In other words, we can say we construct analytically

deconvolvers v. , once for all, and then we implement a

numerical integration scheme (cho>ce of u and sampling).

I There is a second method to find numerical

deconvolvers directly, explained by Dr. Taylor in the recent

West Point ARO Conference on Computational and Applied

Mathematics. In this second method, for a fixed grid

(resolution) we compute the deconvolvers numerically and the

I existence of the analytic deconvolvers guarantees that when

I .the mesh of the grid decreases and the noise decrease the

corresponding estimates * converge to 4 We do not yet

* have sufficient numerical data to compare these two methods.

In Chapter 2, we present an evaluation of the effect

of noise on deconvolution, background limited detectors, and

amplifier limited detectors are considered, a criterion is

given to evaluate and design different systems of convolvers.

We prove that deconvolution of strongly coprime systems

behave well with respect to noise. This is crucial for

practicality and for the actual engineering design of such

systems. This chapter constitutes the paper [6] which has

1 4
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-- been submitted by invitation and accepted for publication in

the forthcoming IEEE Proceedings in Multidimensional Signal

Processing. It is an expansion of part of the Ph.D. thesis

3 of E. Vincent Patrick written under the direction of Dr.

Berenstein.

BrsIn some applications, we find ourselves with occluded

m near regions where data could be collected by sensors but no

deconvolution in the above sense performed. This is the so

m called Local Pompeiu problem. Let us say a signal f is

collected by averaging its values over any square of side a,

I but that this can be done only inside some disk of radius R.

What is the precise relation between R and a (if there is

any) such that the data collected determines f (this would

allow to decid e whether f is what we are looking for or not).

Furthermore, can we reconstruct f from this data?

Surprisingly, the answer to both questions is yes, at least

when R > V--a for the first problem and R > 3 VY for theI2
second. This is the content of Chapters 3 and 4,

respectively. It is not necessary to emphasize the

importance of this work in the problem of Automated Target

Recognition. Chapter 3 has been expanded and appeared in

print as [8) and Chapter 4, [9), has been accepted for

publication.

m Let us conclude this introduction with the observation

that the formulas from Chapter 1 have had an unexpected

impact in problems about systems of algebraic equations,

their complexity and properties of the solutions of the

I 5
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algebraic Bezout equation. In this sense, this paper and its

follow ups [10,11] have been cited in numerous papers on

complexity theory and related algebraic problems. See [12]

for an (already slightly outdated) introduction to this

subject.
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1. Introduction

In a number of papers [2,3,4,6,7,12] the problem of finding

explicit solutions h ..'.hm for the Bezout equation:1 ..
f1hI+-.-+fmh = 1 has been considered. If f1, **,f are

complex polynomials in n variables and they have no common zeros

in Cn , the existence of explicit analytic expressions for the

corresponding polynomials h1 ,'.-,hm has a number of applications

to control theory and commutative algebra. The most notable

application being that of Brownawell [11] where the essentially

best possible estimate for the degrees of the h1 ,...,h m  was

obtained using such explicit analytic expressions. Up to date no

purely algebraic proof of these bounds has been found.

Similarly, In the deconvolution problem, this time the

functions fi,-",fm being the Fourier transforms of a strongly

coprIme family 1 '-..,Pm of distributions of compact support,

one searches for a procedure to compute explicitly distributions

of compact support P ,-'',v 5  such that p *LV+..-+p) = .

A
(Here vj play the role of hj in the equivalent formulation

AA AAIVI+.+p -.'mm e 1). This question arises in problems of robust

filtering, image processing, etc. [30]. In [7] we wrote down

formulas for a solution vl,.., m of the deconvolution problemIl
in terms of interpolation series. The problem we have faced

3recently is that, while for the 1-d case these formulas can be

easily implemented, In the higher dimensional case they are far

too cumbersome, some of them seem to be beyond the range of

symbolic languages like MACSYMA on which we had, perhaps too

1.2



I

I optimistically, relied upon to carry through the computations

involved. For that reason we present here a new version of our

original deconvolution formulas which assumes extra conditions on

the family I ... but has as a payoff a very simple formula

for the deconvolutors l'21.., m . We give herein simple examples

where these extra conditions are satisfied.

The problem of finding an efficient algorithm to compute the

above mentioned solutions to the algebraic Bezout equation being

I still open, we also analyze here the particular case in which

those polynomials can be computed in terms of interpolation

formulas. Finding an algorithm with a low complexity for this

problem will have many important applications in the theory of

distributed parameter systems and in robotics.

We have also found that a language barrier prevented our

work (7] to be more easily available to some engineers, and hope

that the present paper will overcome those shortcomings.

I The first author would like to express his gratitude to the

UniversitO de Bordeaux I for its hospitality while this work was

carried on. His work on the algebraic aspects of this paper are

I inspired on the questions raised by the APOSR-URI project at the

University of Maryland. We will also like to thank our friends

Dale Brownawell and B. Alan Taylor for mafty helpful remarks.

1.3
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I 2. Analytic case

I We will consider only entire functions f of n complex

variables satisfying inequalities of the form

(1) jf(z)j - A(l+Izl)m e (Im z) zc n

Im z = (Im z ,*.,•Im zn) c n where H is a convex continuous

function in F , homogeneous of degree 1 (i.e. H(Xx) = XH(x) when

X > 0). We call such a function H a supporting function. By

I the Paley-Wiener theorem [18] there is a distribution p of
n A

compact support in R such that f - P, the Fourier transform

of p. Furthermore, the supporting function H of cv supp P

will satisfy HO 5 H (Here cv denotes the convex hull).

Conversely, if f =p we can take H i H in (1) and m is

I related to the order of p In a simple manner. Hereafter we will

Just write f E 9' (= ,(r)) If f satisfies (1).

For simplicity denote p(z):=log(2+jzj) + jIm z1. A family

I f1,''fm of functions in 9' is said to be strongly coprime if

there is a constant c such that

I m
(2) ] lfj(z)12 t -cp(z) ,z n.I l

j=1

It is well known (14] that (2) is a necessary and sufficient

condition for the existence of functions "hl,*,hm C V'.such that
a

(3) 2 f ha -1.
I Ji

In other words. a strongly coprime family is precisely a family for

which the analytic Bezout equation (3) has a solution. If we

1.4
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consider (3) in terms of the distributions p1 0
0 film # P ,PM

such that Pi - f, and Pj - h then we have the identity

(4) I * 1 * P V 6.

i.e. P L,., m  solve the deconvolution problem stated in [7).

We will say sometimes that the family of distributions jI,..,'m

is strongly coprime.

It might be useful to explain why is (4) called a deconvolu-

tion problem. If we have an unknown signal (function or even

distribution or random process) v then the usual data one

measures would be rc,'',m given by

(5) V1 := P 1 * V"'m := Pm * 4 "

3 The way to recover p is by deconvolulion (which is still given

here by convolution with distributions of compact support).

(6) V = P 1 i + m

As we have mentioned in the Introduction our problem is to

find easily computable functions gj and corresponding distribu-

tions P i solving (3) and (4) respectively. We note that under

the strongly coprime condition (2), or even under the weaker

assumption that (2) is only satisfied for real values of z (zorn),

there are readily available tempered distributions a solving

the deconvolution problem, namely let

(7) (z) z) z C Pn
(7) af(z)), Z

S.5(Z) 12

1.5
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The problem is that the a do not have compact support and

furthermore, the a themselves are not so readily computable

(except by inverting the Fourier transform). Nevertheless there

are many situations where these a are still very useful, among

other reasons because they minimize the noise amplification of the

n deconvolution process (6) (see [17] for an example of implementa-

tion In 2-d). On the other hand, in many applications it is often

not necessary to obtain an exact solution to (4) but one Is

3 allowed to replace the Dirac 6 in (4) by a (sufficiently) smooth

function u with small support, i.e. an approximation to 6. It

Is this approximate deconvolution problem that is more readily

3 msolvable, even with very good knowledge on the support of the

distributions Pi. which will turn out to be (reasonably) smooth

I functions.

Since the method we use relies on Koppelman type formulas,

like those developed in [1,9], we need the following explicit

3 relation whose proof is an Immediate verification.

Lemma 1. Let p be a distribution of compact support In V n,

I s k s n and 4 = (ZDE,. n) € Cn . The holomorphic function of

2n complex variables gk(z,) defined by

.= (Z1, .' zk , I k+l,' ', n) - (zl,...,Zk_1 rk, .etc n)
(8) gk(z.t). , Zk - 4k

is the Fourier transform (for t fixed) of the distribution

denoted I - I(p, ,k), which evaluated at f e CW (P) has the
0

value

1.6



( <If>:J tk  0) eik (U-tk) du

• - ( k + 1g k + 1+  t l n dp(t).

(By abuse of language we have written Jv(t)dp(t) to denote <p,*>)

We note that for the distribution I we have cv supp I

S cv supp p. Furthermore the collection of functions l*Og

satisfies

(10) gjlzlz1lnlz,lZn-t n ) = P(z) -

U Associated to these holomorphic functions we have a (1,0)

3 I differential form g In the variable ?. given by

n

3(11) g q(z~t,p):= 1 kz()(k
k=1

Given a family of m entire holomorphic functions f n'*If m its
zero set Z is defined as

(12) Z:- (z S Cn: f1 (z)-..=fm(z) 0 ).

I In our applications we will only consider the case where the set

Z is discrete. We say that Z is almost real if there is

constant A > 0 such that

(13) Z S (Z C Cn: Jim zj s A log(2+lzl)).

It is well-known that an almost real zero set Z is discrete (8],

115]. For a discrete set Z, r > 0, we can define a counting

function n(Z,r):=#(ZnBr). Br . (zCcn:j'zl<r) - Euclidean ball of

center 0 and radius r. The distance function is d(z,Z):-

1.7



I

Given a family of n distribut.Aons of compact support in

H Pi P. °''" "Pnt let us denote by H I the supporting function of

n
cv U supp pj, that is

U (13) H1 (e):- max max(x. :x c supp i) ,,,,n),
1Sj~n

X49 - x-n + +x
S181 n n

Definition 1. A family of n distributions /1 '".pn of

compact support in F n is well-behaved if there exists positive

constants A,B,N,x and a supporting function H such that

n oH0 S Hit such that the zero set Z of the functions

fl = /'" .'* f = pn is almost real,

(14) n(Z,r) = O(rA),

and, denoting
n /2r

(15) ff(z)f: (Z frazu)l 2

3 the following Inequality holds:

(16) If(z)] k B d(z,Z) e
(l+lzl)N

Definition 2. A well-behaved family /Jl'''''pn is very

well-behaved if there are constants cl.9, c1>0, such that for

every E Z we have

(17) Ij(;)j:= Idet f ; (k'a c ll+10 ) - M.

1.8
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This condition Implies that the common zeros of f ,.-.,t n

are simple, that we can take x a I in (16) and that If CC' c Z,

C oC then [ -cj Z c 2 (I,+I()M for some positive constants

I c 2 .M'.

We will say also that functions f" ... 'f n are (very) well-

behaved if the above properties hold.

Given a family f,'.'f 3  In C,(,n), m > n, with no common

zeros we introduce the following functions and differential forms.

First, let gi = gjlzP) fj = , be the (1,0) differentialn

forms In C given by (11), we write g1  g jdk" Recall the

k=l

coefficients gi are holomorphic in both z and t. Let F be

the vector valued holomorphic function F: - (f1 '..',f ) we

write

IFR()I:UI{ 2 if( )J2I
J=1

I which is a nowhere vanishing C function of C. Let

(18) - f (z.t) 2 f (klfi(z)/IF(t)j2
J=1

Im
(19) Q Q(z,C) = f"g J(z,C)/IF( )j2  •

j=1

Therefore p is a C function of (z,K)., -(Kk) ! 1 and, as a

function of z. v is a linear combination of the f J. Q Is a

(1,0) differential form in C, Its coefficients are C' in (z,t)

and holomorphic in z. Finally, the n+1 functions &. C In

(z,C) and holomorphic In z are defined by the identities

1.9
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(20) glA...^gjA...^gnQA . Agdn^...dA * 1 s s n

- (21) g IA Agn W An+1d 1 A- *Adt n

It is clear that the A are simply n x n determinants whose

entries are obtained from the coefficients of g I..,g ,Q.

Therefore, as functions of z, they are finite linear combina-

tions of products of n among the functions gi, 1lkm. Note

that these products are just Fourier transforms of convolutions of

n distributions of the form I(Y , ,k). (see (9)).

In order to obtain simple and easily computable deconvolution

formulas we need to assume that a strongly coprime family of

distributions p1 contains a (very) well-behaved sub-

family p1 ,...,p. Furthermore, we need some control on the

relation between the support of all the p3 versus the supports of

the first n. Let

(22) H2 (0) - max max(xO : x c supp p} .,EIRn)

One such relation between the supporting functions H ,H1#H 2  is

given by

(23) H2 s 2H1 , and

(24) 2(n-1)H 1 (0) + H 2 (0) + H 2 (e) < 2n Ho(e) if 0 0 0.

The last condition is equivalent to

(25) 3r > 0 such that r0 101 s 2nH (0) - 2(n-1)HI(e)-H 2 (e).

With all this notation in place we are now ready to state the

first deconvolution formula.

1.10
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Theorem 1 Let ''',/I a  be a strongly coprime family of distri-

butions such that i •' " is a very well-behaved subfamily.

Assume further that (23) and (25) hold. For any u c C ( n) with

supp u r (x E Rn : lxi s ro) one can write

a n+n z,,(26) u(z) X U(t) J Z

+ Z(-nN+l
-j  fj(z) A - (- ) u( .

SJ=1 Z

Formula (26) can be rewritten as

u(z) - h (z)f (z),

j=1

were the h are given by explicit interpolation formulas and

they are Fourier transforms of a series of distributions which are

computable In terms of the original pl1*.*,p e. In the particular

case where m = n+1 then formula (26) can be also written as

-gl (z ' t )  .... gn+ '(

(27) u(z) = ( )fn+ 1( U g lz) .... gn+ (z, )n+1+1

1fl(z) .... fn+1(z)

Proof of Theorem 1. It follows the lines -f Theorem 3 from our

paper (7]. It uses the Koppelman type generalization of the

Cauchy integral representation formula, specially in the version

due to Berndtsson-Andersson (1). One introduces first a

parameter c > 0, a function v and two (1,0) differential forms

I in as follows:

I 1.11
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(28) 9 (z=) (

I IfC)2

(29) S(ZAt ) I - (-)

J=1

(30) QC (z.() J f(( 12+ r

where as before f = (f1 ,...,fn), f()l2 = Ilfj(t) 2. The

J=1

procedure from ([9], p.402 and p.409) gives two kernels K,P,

(i.e. differential forms in the variable Z of type (n,n-1) and

(nn) respectively) such that if v is a holomorphic function in

a neighborhood of BR' z C BR then

(31) v(z) = 1 Pj i V(iK(z) + v(ZPC(z

I IBR R

These two kernels are defined as follows. Let G(t) _ tn  and

G (t) at, we denote for any a e N

(32) G(a) . ; (a)(zt) d -

1 1 dt a  1t=(ztA)

(33) G (a) = G(a) := -da G(33 G 2  dt a  2t=-O(z,C )

- where . is given by (18) and * by (28). With Q defined by

3 (30) and Q by (19), we define

1.12
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+a +a 2n-1 Iz-tl

(a) (a2 ) 6 a I  a 2
(35) Pc( 1) =2

' a1 !a2  2

a 1 +a 2=n

where o. . . Everywhere the variable z is considered as a

parameter and the 8 derivative is taken with respect to (. Due

to our choice of function G2, the index a 2 can only take the

values 0 and 1. For this reason the expression for P. becomes

particularly simple

(36) P = v (Qe) n + riw'(Q )n-I A

The terms (OQ )n- and (8Q,) must be computed, for instance

(37) (jQ )n = Q .. A Q, (n times) - (2i) n  n!A n(1 )c
-" "n( f ( ) j +C )

where dA = dA( ) = Lebesgue measure in Cn. (We have eliminated

the variables (z,t) where they were evident, we will use this

convention freely In the rest of the paper.)

It is clear that -p and Q are singular when C = 0

precisely at the points c E Z. The expression (37) shows what is

the strength of this singularity In one of the terms of P . The

strategy of the proof Is to try to get very singular terms so that

when c --4 0 the volume integrals In (31) become sums, while the

boundary integrals tend to zero when we set v - u and let R

over a conveniently chosen sequence. The reason this idea works

Is the following lemma ([7], Corollary 4.1.1):

1.13



U Lemma 2 Let oo be the measure which is the sum of Dirac masses

at the points of Z, I.e. for r c Co(C n we have Irdo

3 Then, the family of measures o given by

(38) do (C) 2 n

(lf( )12+4 )n+l

converges, when c --. 0, to the measure

,n do o

where, as always, J denotes the determinant Jacobian ofi f ,*'" 'fn

1 n

From (37) we see that the first term in (36) is amenable to

3 Lemma 2. The second term is not singular enough, therefore it

will be transformed using Stokes' formula in the corresponding

U integral of (31). Namely, due to type considerations, one obtains

the first part of the following identity

d (v( )-vC (zA)(aQ- (z,A)) n-A Q(z,Z1)

n- - n-1 -- n- 1

a(v~ OQ ) A Q) =Vf (IQC ) A 8Q + V af C A (CQ ) A Q.

- The last identity follows from the fact that v is a holomorphic

function in t and the (2n-2) form (5QC) n-i is a-closed.

Using this identity the representation fo'rmula (31) becomes

(40) v(z) - 1 f v(.)(K +n (Q) n- 1 ^ Q)( 2n1 )n OB R , C"r
(2n1) BR

1 v()(V( dQ n 5V ( Q) n -1 Q),

(2wi)

U 1.14



I

I where the integration is In the variable f and we have

suppressed the dependency on (z. ) of the kernels.

3 Lemma 3 The following Identity holds

(n+l)n

(41) g^(jQ ) - (n-l)!(-I)
C C f(t)12+ )n+l

2:-l t ( J (z)-fJ(()) /Agk A \

where the wedge products in (41) are to be taken In their natural

order, e.g. A g = g2A.•.gn.

ICN
Proof of Lemma 3 We start by rewriting ip

n n

(Z)! Rj ) + C Zf(Mif (Z) f (M*) + if (t)12 +
4P = Jul u=l

jf(t)j2+r If(k)l 2  +r

= 1 + (f (z)-f( M)i
l 1 1 f (t) 12+C

3 Denote f j f (t) and r j = (t) :=(I()I 2 c+)-I J. Then we

have3' n
P= 1 + I(f(z) - Q ', Z T

Therefore,

g . A ̂  gQ,)n- 1  . [X (fj(z) - f J) A i vi A g jl n - l

1.15



I
L (f,(z) - f 10 1 A t L 8ak A gkj jIjl ksj

since AIV ^ A j W 0. Using that the 2-forms Apk A g commute

and that the product of two of them with the same Index vanishes,

3 we have

(1 - g " (n-k)! k ( j k g)

(n-l)n

I = (n-l)!(-l) 2 (A gk)A(A avk) "
kj kj

I Hence
n-1 n(n+i) n

VA ( 1 ,k Ag k) (n-l(-,) 2 (A g k)A,(A a iI k.J 'j =

Now, we have j¥k= IfI2+-C - (jfj2+C)-2-k jlfl. Therefore

we can use that 9IfI 2 A9IfI 2 - 0 and obtain

n n n 2 n

N L A y A 1lfl 2 A ay
n k=i .k ,J=1 lsk k J<ksn kJm =:A'vk =  lfl2+, n -  (ifl2%1)n+l

If we now expand ajf1 2  Y fk fk. we see that only the term

m k

f i f remains In the triple product above. Hence

n ) n

A.zzg) l + - 2 A lfkn+•

This concludes the proof of Lemma 3. D
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I
Lemma 3 tells us that 4f-^(8Q dn-2^Q Is the product of a

measure with a smooth density, independent of C, and the functionI2 -n-iC(If( )I +c) -  . Lemma 2 can now be invoked to see that the

volume integral in (40) reduces to a sum when c --# 0. In fact,

let us choose R so that if() 2 If( } +f( ) 2  0 when

ki - R. This choice is always possible since Z is a discrete

set by assumption. In this case none of V, K , Q have

singularities when c - 0 and C c aBR' We set KR 0. Q0  to be

the correspondient quantities. Therefore

v(z) = 1 n v()(K0 + n4 ((Q 0 ) 
n - 1 A Q)

(2n1) ^B

+ 1 Iim V((~) I-P(,Q ) n n J89A(jQ C) n-i A Q]
(2 I)n  -0+ BR

Recall that f (R) - 0 if k e Z and 1 s _< n. Using

Lemma 2 and the definition (20) and (21) of the A we can

compute explicitly the limit and obtain

(42) v(z) v ()(K + r ((Q )n- A Q)
(2ni) 

aB 
R

IA (z A)f(z, ) n A (Z C)

+ v(1)n+1 + 'Z) v( )EB'cZ)B R  J(C j=1 t:Zr-B R  J(R

Up to this moment we have only used that Z n 8B R * ard

that v is holomorphic in a neighborhood of B R To let R --. ®

we have to choose a sequence R - O judiciously. Recall that

u(Z,r) -(ZnBr) s CrA for some positive constants AC and all

r a 1. Let N be the smallest Integer i C(R+l) A + 1, divide the

1.17



1
shell 3 R+1 \BR into M concentric subshells by choosing the

boundaries to be 8B(R+J,/M) 0 s j s M. There is at least one

such subshell that is free from points of Z. choose R' to be

the mid-radius of this subshell, then d(t,Z) z (2M)1 if

I1 = R'. Starting from the sequence R q - ,2,--- we

construct a sequence R q, q < Rq < q + 1, such that for some

positive constants AV, NI

q-N1  Ho(Im) RIIR
(43) If(C)l z A1 q e if qIl =  q

3This follows from (16) and the choice of Rq.

We are now ready to estimate the terms In the boundary

integral of (42) for R=R We will assume Izi s C0 < and

3 consider those q such that Rq z CO + 1.

First, let us observe that the functions g , 1 J s M,

II s k s n. satisfy an estimate of the form
11 4, (I4m z)r2 I I

(44) Ig (z,)l S C (1+IzI) (1+M Ml eH2

k I

for some constants M1,C1 > 0. If 1 s j s n we can replace H2

by H1 . We can now estimate the coefficients of differential from

Q. Denote IQ(z,tlfl the largest absolute value of the co-

efficlents of d k at the point (z,(). We proceed as follows.

First,

3 (45) IF(t)I z If(t)l ? AIq e ( if lI - Pq*

Therefore

U1.18



Un

U jj~z. )fl ~ Ijg~ u~) l2)1/2I i -
e1 12( z) (Im 11(1 1)

C1(1+lzl )m 2 (l+Rq)M1 eH2

which leads to

S2 H( ) -M H (Im Z)
(46) IIQ(z'uII S 3q e

The constant C3  depends in fact on z , but jzI S C0  and

N2 W M1 (In fact C 3 can be estimated in terms of eJIM Z I

U and polynomials in jzj.). Similarly, with possibly different

values for the constants C3 ,N2 appearing below we have

3(47) JQ(z.KIj S C3 qN2eH2(Im C) - 2 Ho(Im C)

I(48) II9Q 0(zK)II S c3 qN2e 2 H 1(I a  ) - 2 H o (Im )

(49) I 0(Z)l S C3 q N1e-H(Im 
)

(50) IF(z)(ZS C q 1NIe-O(Im

I ,F() 3

To estimate K we recall that a 2  can only take the

I values 0 and I In (34). In case a2 = 0, we have to estimate

terms of the form V 1 (Q o )  with 0 s a S n - 1. There

are powers of q that we will disregard, the estimate is then the

following functions of Im t

1.19



I
I-a .Q -(n+. +1)H +2q, N

go 0Q(e%) l11 < <  1

Since H1 k N0 , the worst case estimate occurs when a I - n - 1.

Hence the terms corresponding to 02 - 0. 00 + aI - n-1, In the

definition of K. can all be estimated by

-N3  2nHo(Im ) + 2(n-1)H 1 (Im t)

(51) C3 q e ! 1 - R

N The terms with a 1 = 1, a 0 + a1 = n - 2 correspond to the
n-al al~

estimate of ,-o (jQo) a !Qf. The worst case occurs this time

when a = n - 2 and we obtain an estimate of the form

N3 -2nH (Im )+2(n-2)H1 (Im ()+2H 2 (Im C)
(52) C3 q e , M = Rq

In (42) we have one more term to estimate for RI = Rq,

(53) llo(NQo) n-i A Q C3 N3 e-2nH(Im C)+2(n-1)Hl(Im t)+H 2 (Im k)

The conditions (23) and (25) Imply that the largest exponential

factor In (51), (52) and (53) is the one In (53) and it satisfies

(54) -2nHo(Im t) + 2(n-1)Hl(Im t) + H2 (Im t) s - rojIm tj

since we have assumed that u c (B ) we have

I~ S C-N3-2n er 0 IIm .j
(55) 1' e
which allows us to conclude that, if v - u

(56) lim u(t)[Ko(ZA) + no(z.A)(Qo(z.-)) n-1,) A O.
q' BR

q
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I

To conclude the proof of Theorem I we need to show that the

series appearing in the representation formula (26) converge

absolutely and uniformly in compact subsets of Cn to functions

in V. Since we have assumed that Z is almost real, the

estimates of all the terms A , ,3 -1 are in terms of powers ofI A
RI. Using that n(Z,r) -(r A ) and ju(4) I decreases as fast

-N4
as jt 4 for Z c Z we have the desired convergence once N4

is chosen sufficiently large. The support of all the distribu-

tions thus obtained is contained in the convex set K whose

supporting function is (n+l)H2. 0

Remarks 1. One can see that the condition 2H1 a H2 cannot be

relaxed if the other conditions of theorem remain in the same,

otherwise the exponent in (52) would become positive and we would

not be able to prove (56).

2. A way to weaken the conditions in Theorem 1 is to

impose some better lower bound on JFJ than (45) that depends only

on the first n functions. We will do so in Theorem 2 below

N -
3. It is clear that one needs only u 6 C 0 (Br for N

sufficiently large to obtain (26).

The following example shows how Theorem I simplifies

enormously the computation of the deconvolutlon formula proposed

In (7).

Let H it 'a3 be the characteristic functions of theI '1i r 2 '3
squares centered at 0, of sides parallel to the axes and of length

2r* 2r2 , 2 respectively. One can easily show [7], [17) that

1.21



I

I .t Is a very well-behaved family with
2l r2

I 0o(Im t) r2 (I Im I;1 + jIm C21)

Here H I ( ) ( M) - /3(jIm k I + I'm t2)' In this case the

main hypotheses (24) reduces to verify that 4r - 3 > 0 1.

Since I11 + I 1  xIX2  for x c F we have

r0 = 4/2 - 3/3 z 0.2. The variety Z is this case is given by

ZI n 1U 5 , L I4 :J,k iE Z} u J,k cE*J

(There were about forty different types of terms in [7)

compute.).

Before we proceed to state Theorem 2 we need to point out

that the representation formula (31) does not depend on the

particular choice of the differential forms gi we have chosen,

rather on the fact that (10) Is satisfied. That is,

* n

k IZtl(zk-t~) = fz) - f(

k= 1
Now, let f = p and h(z) - sinBz for some B > 0, and denote by

g the differential form associated to f by (8) and (11). Let

us define a differential form y byI sin Bzl-sin B 1

(57) Y(Z,C):= f(t) 1n _ I  dt + h(z)g(z,),

wrltlng r =r dr we have

r1 (z,. Z1 t1 )+'+rn (z, C)l(zn-C) f(z)h(z) - flt~h(()

therefore we can associate Y to the product f-h. It I* also

1.22



I clear that as a function of z the rk are Fourier transforms of

distribution of compact support easily computable terms of p and

B. Obviously we can replace sinBz1 by sinBz without any

problems, hence, given a family f1 ,'.',fm we can construct an

augmented family fl,....,fIfm+ 1:f 1 sinBz,1 ... ,

f2m:f m*sinBz1 , .. f(n+l)m:=fm-sinBzn. The corresponding g

for j z m+l are computed following the procedure (57). It is

clear that if fl,.'.,fm was strongly coprlme, the augmented

i family remains strongly coprime. If f ,'.-'fn form a very

well-behaved family we will keep the notation H0 HIOH 2 to

indicate the support functions corresponding to the m original

members of the augmented family fl,..-,f(n+l)m

i Theorem 2 Let f1 ,'.',fm be a strongly coprime family such that

the subfamily fl,-.'-fn is very well-behaved. There are

constants 8o z 0, r0 > 0 such that for any B z Bof and any

u C Cor the representation formula (26) is valid for the

augmented family f..-'fm,..-f(n+l)m defined above if either of

I the following two conditions holds:

(58) H2 s 2H and 2(n-l)H 1 < (2n-l)Ho

(59) 2H1 < H 2  and 2(n-2)H 1 + H2 < (2n-1)H o .

Proof The proof is exactly the same as that of Theorem I except

for improvements on the estimates (46),(47) and (50) for the new

Q and v. Recall that it is there where all the functions

f 'If (n+l~m appear. Let F1:=(fl,.'f(n~l)m) and keep the
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notation F a (fl'....f) as before. We have

(6O)=FAS)II = JF( j141sinb 2 ' "  4.iflB 12 )  /2 "

It is clear that for some positive constants c.,C n  we have

0() (+1~n j12 +-Isn nl2 )1/2
a. (l+[jsinBml +*''+sinBz;nI2) 1 / 2

2BJIm'J 1  2BjIm t
zc e zc n e

n n 1/2

where JIm tj - Z im l' 0 JIm t = JIMZ I tj, 2 .

j=1 j=1

We estimate first g, j 2 m+l, for Jz-t a 1 since that is the

only case that appears in the proof of (56). As it follows from

(57) we have, for some ik (1!isn, isksm), the estimate

j1giJ(z,. )jj s Ce z If t)l (2+)sinBJi12)1/2 + Jigk(z ' C) 11j

S C( l+ 1z 1 N 1(+1I ) N I[IfCe.)lo CR ) + e Z)e H2 (IM

It follows that
(n+l)m 1/2

ilQ(zC)I1 S 11g, Ig (z 'C 11 2

N1  e BlIm zl+H 2 (IM z)

eH2 (Im + IF(UK

[ 1 2 IF4 (
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1

Therefore, for a positive constant C2  depending on z, we obtain

I NN [ (In AI .oI in Ill

(61) IIQ(z7,t )I C2 (1+11) & 2  ) 0(

Simllary,

IF (7.)I N Bo () _s
(62) I4(z'U) S IF 1 '()I  C 2(N+ 1 e 0  n

Q(z)l s C max IlafJI k gk )II

lj ,k%(n+l)m IF (R)l2

Now, for j a m+1 we have for some 1 s I s n, I s t s m

3l f if )lIIsinB a Y(k ) + f,( )BcosK Bid ill

N2 ( 1 ( K 2( )I c(I+jtjI) (o(i;) e + IF( )Io~i:)).

3 It follows that

5 t S (I+ I j) +IF(t ) 6((2 )2e H 
2 (I m  R) 2H 2(Im r)

IiQ~,~HC()jH (m) +2H (IOZ)- e 4mt)e 2l

I 2(1+ 1 +e

Choose B a 0 such that
0B

(63) 2H2 (Im t) - 2H (Im () - .- lIr C 0.

When B a B we will have IQ(zt)ll - C2 (l+tIl) and
Nf H (I. r')-H (Ira r)

(64) FiQ(z r)if % C(+rj ) R I 12 a

where C2  still denotes a constant depending on z of the form

I1.25



C2 a const.(1IJz) 1 .

U We can now return to the proof of Theorem 1 at the point

where we obtained the estimates (51).(52),(53). Ignoring powers

of q the exponential factors are:

N(510) exp(-2nH0 (Im t) + 2(n-l)Ei(Im~t-IMtl

U (52') exp(-(2n-l)Ho(Im t) + 2(n-2)HI(Im t)+H 2 (Im t))

1 (53') exp(-(2n-1)H0 (Im K) + 2(n-2)H 1 (Im k)).

Under the hypothesis (58) the largest of these three is (53')

and Its exponent satisfies

(53") -(2n-1)Ho (Im C) + 2(n-1)HI(Im C) s - rouim CJ,

U for some r0 > 0. If the hypothesis (59) holds, then the largest

3 exponent is (52') and we define r0 > 0 by

(52") -(2n-1)H 0 (Im ) + 2(n-2)H(Ilm t) + H2 (lm.) s - roIlm

In either case the rest of the proof is the same as that of

Theorem 1. 0

I
Example As shown in (7] the family plp 2 ,P3 obtained by taking

i = characteristic function of the unit square

a rotation of p1  by 36", and p a rotation of P1  by 45",

satisfies the first conditions of Theorem 1 and Theorem 2 with

S0(6) a jj since the squares contain the unit disk. One can

easily convince oneself that the hypothesis (24) does not hold

I(e.g. take 0 - (tO), t > 0.) On the other hand one can take
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I

I .() a a/2 (j since'all the squares are contained in the

disk of radius r . We are in the situation of hypothesis (50)

and its verification reduces to the fact that

ro a3-2/2 0

Furthermore B°  4(r/2-1) works In this case.

I
I
I
I
I
I
I
I
I
I
I
I
I
i 1.27



3. Polynomial case

The conditions on Theorem I and 2 imply that the convex set

defined by 0 contains a ball. If we want to prove an algebraic

version of (26), the fact that this condition is not satisfied

plays a role. Such a representation was stated in [3,4] without

I proof. We analyze here the conditions under which It is valid.

Theorem 3. Let p,1'-.pm be a family of polynomials in Cn

without common zeros, suppose further that:

a) D: =maxdegpj =degpi for is is n.
1sjam

b) Z (z C Cn  pI(z) - 0; 1 s i s n) is discrete.

c) J(z): = Jacobian determinant of p1'-.,pn at z is - 0

for all z e Z

d) pl,. pn have no zeros at infinity, I.e. #Z - Dn.

Then

n+1) +(g~ + _~~-pjz

(65) 1 = n(z) , (z) J(it)
tez J=2 rmz

where -0 A are defined as in (18) - (21) with respect to the

polynomials p1 ''',Pm"

Remarks 1. The functions gi defined by (8) are obviously

polynomials of degree D-1. It follows that (66) has the. form

(66) p (z)A (z)+*...+p (z)A (z) = 1

for some polynomials A C[z2,..,zn] of degree at most n(D-1).

This follows from the fact they are given as n x n determinants

Involving the g k
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2. As before, the ease a n n + I leads to a particularly

pleasing form of (66) 1 ** 
1 (zA)

(67) n+1

(67 1 pn+l ( ) gn(z 'A) gn (zt)
I Pl(Z ). -- Pn+l(Z)

I 3. The two statements in condition (d) above are really a

form of Bezout's theorem [19]. The meaning of the expression

U"Pl,..,pn have no common zeros at infinity" is that if we

introduce homogeneous polynomials H (zoz): z ,..,

.1 0 zn zOpj[zoD z]
then the subset of C n+  defined by (zo=O, H =.-=Hn =0) Is

(0). This Is equivalent to the statement:

In
(68) IP(z)I= [ lpj(z)12 1/  k Cz D  if Izl a Rok1.

If we call p the leading homogeneous polynomial of pj,

then the statement (68) is also equivalent to:

(69) (z -E E n: p0(z) -...=p0 (z) - 0) = (0).
I n

I We also note that (69) implies (b) above. That is. condition (d)

above Implies condition (b).

Proof of Theorem 3. The proof of the same as that of Theorem 1.

This time we take v=1 and R arbitrary k R (cf.(68)). One can

estimate IQ(Zt)ll C/ItI. jljQ(z,)l, C/1J12t . (zC)l , C/lI D ,

3 IlQ(z.t)ll s C/jj if It1 - R and jzj s K s R-1. with
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I
C a CM > 0.- These estimates Imply that the boundary integral In

(40) tends to zero when R -9 a. 0

If p ,'.',pn are such that their leading terms p, satisfy

(69) but their degrees deg pn D are not all equal or

max(D s j s n) is smaller than D-max (D :Isjm), then we can

still prove a version of Theorem 3. That corresponds to the

analytic counterpart of Theorem 1, that .-s to Theorem 2. For the

moment we continue to assume that J(z) o 0 Vz e Z = (p ... pno).

3 Let L1 (z) = u Z1 ...+unZn  be a linear homogeneous

polynomial with generic coefficients. The condition that

I C n : L =P 2  = 0) w (0) is an algebraic condition on the

coefficients of L . Therefore we can choose L such that for

any integer d 1 z 0 we have P 2 = P
0  P = 0) = (0.

Continuing in this fashion we can choose L1,.. Ln, d1 ,.. d

such that for any choice of constants c,-',n , if we define

P P (L +C), then pI=..9=p0 n 0) - (0) and deg p = D for

1 5 j s n. It Is clear now that for most choices of C we still

have that all common zeros of p1 "'.pn are simple and

V ' + i°Pp have no common zeros. Theorem 3 can now be

applied to this new family, one obtains polynomials A

(70) 2: A p j 1, deg A s n(D-1)
Jul

and such that they have a representation of the type (65).
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I We remark that a representation such as (65) cannot be valid

if the p,..-,pn have common zeros at infinity. For instance,

in the example of Masser-PhIlippon (113:

ID D ... p Z D op 1z zD-iP1 M Z1 P2 a zl-z2 n-1 Zn-2Zn-Pn n-1 n

one knows that 6 = is the best estimate possible for

the degrees of A solving the polynomial Bezout equation. The

. D_ D2 Z D2 D3.

polynomials A z z , 2 D 3 = - Zn D '

z 1 z 2  z2-z3

D n - 2 z D n - 1  Dn- 1* 1- lZn~l Zn

A zn- z n - 2  1 A = n have exactly this
n-1 =  n D - n 1ZnZ -1"

n- nn--1 n

I degree. On the other hand if we had a representation like (65) we

could conclude that there are solutions Aj of the polynomial

Bezout equation with deg A. S n(D-1) like in (70).

I We would like now to show that the condition (c) of the

simplicity of the zeros in Theorem 3 is not necessary. Regret-

fully, we only know how to do this in the case where m - n + I.

I
Theorem 4. Let p1 ,.-.,Pn+l = be a family of polynomials in C

without any common zeros, D deg p,=.'=deg p. a deg Pn+1  and

0=.. 0 =  ) = {0). Then we can find polynomials Aj of

degree s n(D-1) satisfying the identity Ajpj = 1. The

coefficients of the A can be written in terms of the values of

I Pn+1 and values of derivatives of pn+1' and the coefficients of

the gn+1(z, ) (when considered as polynomials in z), all of
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I
these evaluated at the points of ( (:p (r.-.a*p n(Q) a 0).

I Proof For 0 < c << 1 the function 1/p,+, Is holomorphic In a

neighborhood of 0 - (1p,[ S C 1 Pni % e.. This set Is a

compact polynomially convex set. (The compacity follows from the

I condition (68)). By Sard's theorem one can choose the t so

that the sets ([pj[=cj) are real analytic submanifolds of Cn

(In fact, we only need It in a neigborhood of D.) For any

v c X(ff) we have that integral

(71) Res (vd iA ... Adtln):= 1 v() (Z) A Adt n
(2,1) n  v( R pnK

Inl n

is independent of choice of oi,---, n  as long as o < Qr S C
and the (jpjj - aj) are smooth. Furthermore, if v is in the

ideal generated by Pi'"1 'Pn in 1(D1) then this residue is

zero. Therefore, It depends only the values of v at Z and a

eocertain number of derivatives of v at Z (as it follows from

the Nullstellensatz as presented e.g. in (13], [16]). In other

words, the integral (71) can be considered as an operator defined

I by a certain linear combination of the Dirac masses 6 and their

alai
derivatives - , b c Z, applied to the holomorphic function, a

v. This operator is very hard to compute explicitly except in

I very simple cases but it is perfectly defined as the common value

of all the integrals (71). It is called the residue current of

Z.

I
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Let us consider now the polynomlal B(z) defined by:

I1  (z.A)

(72) B(z) a Res, I 1zt rn+ I(z ) dt 1 A... dPn+ (1 gn~z  "' Dn ' ^

pj(z )  see Pn+l (z)

In+l

This polynomial is In fact of the form A(z)p(z), with

J=1
polynomials of degree s n(D-1) whose coefficients are computed

in terms of the values of derivatives of pn+1 and the

coefficients of gi (as polynomials In z) evaluated over Z.Ik
The only problem is to show B(z) - 1. We fix values j ,O<a <cJ.

Consider complex numbers al....,an  sufficiently small and so

chosen that:

1) All the common zeros of p1-al,.*-Pn-an are simple and

lie in (1p1 I < I " "'p- l < P-

ii) P-al ' '' p n -an' Pn+l have no common zeros.

Note that P+a,'" *''pn+an still do not have any common

zeros at w. Let us denote Za = (z Ccn .: pl-al=.e=pn-an 0).

Then

( 7 3 ) R e st ( v d A  . . A d n  - v ( ) n n I ( t --a

Za 1n (27iii) fI=(Pt)11p( 1

0(P.-a 0 OPn -an ) (p, " 'Pn)
where J() "n) (t n and the last

identity follows from Stokes' theorem. (Replace the contour by
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little spheres about the distinct points of 1a). This last

identity Is the effective computation of the residue current of
I Za , namely

Resza - Z J()16

t a

The first identity in (73) shows that Resz -- Resz  as o --. 0,

I.e. the residue currents at 0 - 0 are continuous when acting on

holomorphic (n,O) forms. On the other hand, by Theorem 3 we have

1 n~1gUz - (z,1)

(72) Res z  K 1 n ZA dr 1..Adn a 1.
a Pn+1 gn(z. ) "'" gn (z,R) " n

p1 (z)-a 1 ,," Pn+l(z)

(Note that the gi corresponding to pj and to pj -aj

U coincide). By continuity we obtain B a 1. This concludes the

proof of Theorem 4. 0

Remarks 1. The can obviously obtain the same result without

assuming the degrees of p,*-'',pn coincide or that they are

larger or equal than that of p,+l.

2. The reasoning of Theorem 4 extends to a strongly

coprime family of n+1 elements whose first n members from a

well-behaved family. Under the other conditions of Theorem 1 or

Theorem 2, we obtain a series representation of the solutions of

the Bezout equation which we computed in terms of the residue

current associated to Z. This time the series converges after

grouping of terms.
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3 ,The interest of the theorems in this section lies in

the search for explicit algorithms to obtain solutions A
a

for the algebraic Bezout equation -A PJ , I which satisfy

Brownawell's estimate, deg Aj 3 nD , p a min(n,m).

4. Conclusion

-- We have shown how explicit solutions to the analytic and

3 algebraic Bezout equations can be obtained under natural

restrictions on the original functions f ,'',f m. This work has

3 applications to the implementation of deconvolution for

multidetector systems.
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1. INTRODUCTION

Throughout the last several years mathematical results have been present-

ed which form the foundations for the use of multiple (parallel) linear opera-

tors, each given by convolution with a distinct kernel (or impulse response),

in place of the use of a single such linear operator or, equivalently, in

place of the use of multiple (parallel) operators each with the identical

E kernel [1) - [131. See Fig. 1. The mathematical results cited above describe

the conditions under which compactly supported distributions p.' P2. ... Jm

have associated to them compactly supported distributions vP, u2 .... IrV

* such that

m
- i v.= 6, (1)

where 5 is the Dirac distribution on R and where * denotes convolution.

We often refer to the pI as convolvers and to the PI as deconvolvers.

To introduce some explicit multiple operators and their role in deconvo-

lution, let us look at-an example and the results of a eomputer simulation

[14]. Our example is for a case in which equation (1) holds for m = 2, and

3 it is outlined in Fig. 2.

In the center of Fig. 2 the block diagram of Fig. 1(a) is reproduced for

the case m = 2. (The operator 0 in Fig. 1(a) will be discussed later.) We

3 shall be considering in this example the one-dimensional case, that is, func-

tions of one variable. To the left of the block diagram is the graph of the

Input signal, that Is, the function f, which here consists of the sum of

translated Gaussian pulses. (This function is one that Is frequently used for

the evaluation of deconvolution algorithms; see for example [151.)

The input signal f is acted on by two convolution operators, one with

kernel pI and one with kernel y 2 " The resulting output functions are g
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I md g2, respectively:

3 (X) - (r.I)(X) - JIr fy I(x-y)dy, I a 1.2, x e R.

I In this example, the kernels p 1 and p2 are essentially the simplest pos-

sible kernels with compact support: the kernel functions are each constant

over some bounded Intervals and zero elsewhere. (The support of the kernel

3 function refers to (the closure of) the set on which the function is non-zero;

the support is called compact if this set is bounded.) The kernel functions

are shown in Fig. 2: p is supported by the interval 1-1,11, and p2 by

the interval 1-Vr,v].

The output functions gI and g2  are also shown in Fig. 2. We often

I refer to these as the data functions, for in applications gI and g2  are

typically the results from two distinct measurement operations which are

modeled by the "convolvers" p1 and p2" An application that is a physical

realization of the situation presented in Fig. 2 is spectroscopy. In that

case, the function f is an unknown density function with the wavelength of

I the optical radiation as the variable: f(x) is the energy per unit wave-

3 length at wavelength x. To make a measurement of nonzero energy from this

density function it is necessary to integrate f over some range of wave-

lengths, for example, gW(x) = f(y)dy. We could also make the second
x-A

measurement g2(x) = J f(y)dy. A linear scaling of the wavelength vari-

ables converts these integrals into exactly the example in Fig. 2. In this

interpretation, the peaks In the unknown spectrum f have a separation

Ismaller than the lengths of wavelength intervals over which we Integrate.
Consequently, the data functions gI and g2 retain no obvious indication of

two peaks.
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I
Of course, the classical deconvolution problem is to recover the unknown

input function f from only one data function, say g 0of. The term

multiple operator deconvolution Is used to emphasize that in recovering f we

may use more than one data function. In fact. part of the problem is deciding

3how many are sufficient. More precisely, the issue is how many of which con-

volvers p are sufficient for the recovery of f. As we shall see later,

the two we have chosen for our example in Fig. 2 are in fact sufficient. They

are in fact sufficient in a very strong manner. Not only is f uniquely

determined by g1 and g2, but In fact there exist linear operators given by

convolution with distributions U1 and v2' both with support no greater

than the larger of the supports of 1 nd p 2, such that

l f = uV1 g1  2 '

l We will give the explicit formulas for PI and P2  later. Here, to finish

our exanple and discussion of Fig. 2, we have shown to the right in Fig. 2 the

result of recovering f from gI and g2  for a digital simulation [14]:

discrete versions of "deconvolvers" i --and P2 were constructed and, using

discrete samnples from the data functions g1 and g2, a discrete approxima-

tion of f was constructed by the sum of discrete convolutions. A quite good

reconstruction was obtained. (We attribute the asymmetrical ringing in the

result to a combination of truncation error and the use of a loop in the simu-

lation that recalculated a quantity that should have been calculated only

once.)

We would like to emphasize one final point: the example is based on

mathematical results regarding relationships between convolution operators and

nsmooth functions on Vn. Whenever we mention the use of discretization, it is

always in the sense of a discrete approximation to a smooth function. When we
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I refer to discrete data. we mean samples of the underlying data functions. The

reconstruction of the unknown input depends directly upon how well the dis-

crete data can be used to approximate the data functions for a given choice of

I interpolating functions. In Fig. 2 It should be clear that if gI and g2

were sampled at a rate of one sample per unit interval (21 tick marks), one

could hardly expect an accurate estimate of f. The sampling rate for the

3 results on Fig. 2 was 50 samples per unit interval (20 samples per tick mark

Interval).

I Thus we always view the theory, the applications, and the algorithms In

the following order. First the problems and results are stated in terms of

continuous domains that model the applications. The accuracy of the algorith-

mic Implementation of the results then is understood to depend on the sampling

rate, with convergence as sampling rates increase. The specification of a

I possible minimum sampling rate for a given reconstruction problem is typically

a problem-specifIc task in interpolation error estimates. In fact, the

Nyquist sampling rate is sufficient for band limited functions f.

The example in Fig. 2 illustrates why equation (1) is of interest for

applications in which the convolver pi must correspond to a physical, analog

device wherein the impulse respnse is dictated by a solid state or biological

process. It is frequently possible to select such analog convolvers which

satisfy approximately the multiple operator criteria such that equation (1)

will hold. Then each associated deconvolver can be digitally implemented.

The fact that the deconvolvers act linearly and have compact support means

that their implementation is straightforward; their action as continuous

linear operators implies stability. Most importantly, the evident high band-

width of the overall operator is accomplished without any essential change in

I the response functions of the analog devices. The term overall operator
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refers o the operator given by the kernel distribution p gIe pI - 8. OfI i-I

cci: se, because of practical constraints such as analog and digital approxima-

tions and computation time, the design objective for the overall operator

would not be the Identity operator with impulse response 8 but rather a high

bandwidth approximation of the identity operator given by an impulse response

I. In terms of the distributions in equation (1). since convolutions commute,

m m

1=1 1=1

In a sense 0 can be considered to be made up of "parts," each of which

arises from one of the practical constraints just listed, along with a special

part that is deliberately added to control the noise power spectrum of the

output of the overall operator.

The publications on this subject have appeared primarily in the mathema-

cal literature. The following issues regarding (1) have been addressed:

sufficient conditions for the existence of solutions [1] - [4], [16]; examples

of sets of distributions that satisfy the sufficient conditions [5] - [7];

construction of explicit solutions, that is, explicit formulas for the decon-

volvers [7] - [9]; and construction and evaluation of approximate solutions
I [9), [111]. [14).

Only recently have specific applications of (1) been mentioned. The wo-rk

of Berenstein, Krishnaprasad, and Taylor [14] was one of the first times that

(1) and contemporary mathematical methods for understanding the equation were

applied to physical problems. This work also discussed the question of

additive noise and the question of the continuity of the overall operator with

respect to the distributions l' P2 , ... IM" The noise question is in regard

to noise added following the action of the operators defined by the p,,
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Iwhile the continuity question Is in regard to the dependence of the overall

performance on either the actual analog approximations of the p I or the

digital approximations of the PI'"

3The approximation methods of (11] were motivated by this work of
Berenstein et al. These methods exploit the approximation in (2). In con-

Junction with the analysis, a computer simulation for P2 was performed.

This simulation dramatically illustrated (2) for imaging devices in which the

analog convolvers were solid state photodetectors. With these results there

Iwas an Increased interest in imaging applications. This led to the considera-

tion of not just detectors but of linear systems consisting of sequences of

operators with each operator of the multiple operator type. These activities

led to the need to answer basic systems analysis questions.

In what follows three topics in multiple operator deconvolution are dis-

l cussed. The first is that, in a sense that is relevant for applications, mul-

tiple operators are necessary for the deconvolution problem to be well-posed.

We present examples to illustrate the ill-posedness of single operator decon-

volution, and a theorem which shows that, except for an uninteresting case, m

must be greater than one In our problem statement.

The second topic is that of identifying convolvers pI ..... 11m for which

equation (1) holds and the construction of the deconvolvers.

The final topic is the major one here: measuring the utility of a mul-

tiple operator design. We describe the result of our application of standard

methods of linear systems and random signals to the multiple operator type of

system of equations (1) and (2). This analysis was necessary if one was to

seriously consider multiple operator designs. While the extended bandwidth

was well understood, analyzed, and even illustrated in simulations, the

consequence of the introduction of noise and of design errors was not fully
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understood. It was clear that sinc, the operator was linear and continuous

Ithat there would be no Instablity due to noise (at least for smooth approxima-

tions), which is already an Improvement over the case of single operator

I reconstruction methods [5), 114], 1151. However, the performance needed to

be explIcIty described so that standard tools such as resolution, equivalent

bandwidth, and signal to noise ratio wou) , ,- available for systems

engineering design studies.

This investigation was motivated in large part by the potential appli-

Ication of these multiple operator methods to electo-optics, especially to
imaging devices. We have in mind imaging devices that are for the detection,

transformation, and display of electromagnetic radiation for a human observer

as well as such devices for artificially intelligent "observers." The prob-

lems and the desired solutions have the flavor of this application. While the

Ianalysis and the results are in a sense general, much is framed and guided by

*the motivating problems.

This interest in electro-optics is made explicit in the last sections of

+his paper. There we examine convolvers and additive noises of the type

encountered in imaging detector arrays. The method developed here for general

performance comparisons is used to compare conventional detector arrays with

arrays configured such that equation (I) holds (up to the resolution limita-

tion irpcsed by a choice of optical saJrpling rate). In terms of the familiar

parameters of resolution, modulation transfer function, and signal to noise,

we show that the performance of the strongly coprime design exceeds that of

the conventional design. Moreover, the comparison has a quantified, function-

al form suitable for system design trade-off studies.
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2. THE NECESSITY OF ULTIPLE OPERATORS

Recall our mathematical problem statement from the Introduction: under

what conditions do the compactly supported distributions pl, 2 , ... Pm on r n

I have associated to them compactly supported distributions l.V2'2 .... ,P m such
m

that *Vi~i'i = 6?

Here we offer some observations and a theorem which motivate this state-

ment. A brief demystification of "compactly supported distributions" is given

In the Appendix.

In Fig. 1(a) and in the problem statement, the integer m, the number

of distributions pi' is not specified beforehand. The number of distribu-

tions as well as the distributions v,.. ,vm  are parts of the problem. In

I the example above for F It was stated that m = 2 sufficed. When the i

are characteristic functions of cubes on n then there are choices for the

Ai such that m = n+ I is sufficient.

Fig. 1(b) represents a different, more restricted problem: it repre-

sents a restriction of the problem statement above to m = 1. We show below

that there is only one trivial case in which a single compactly supported dis-

tribution p0 has an associated compactly supported distribution v0 such

that pOpO = 6. Before presenting this general result we briefly review

t1ree well knovn observations which help to motivate the problem statement.

For these remarks let PO be the characteristic function of the interval

(-1,1) In F (p0 takes the value one on the interval and zero elsewhere).

Observation 1. There can be no such v0  if we permit the input signals f

to belong to any space that contains C(P), the continuous functions on P.

If such a v 0 existed then, for any continuous f, * p 0 o 0of) = f. But

for f continuous, p 0of Is (represented by) a continuous function and,
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n hence. for f n(x) = sin(nwx). n a 1.2..... It Is easily checked that Pofn

3 is zero everywhere.

The problematic functions fn in Observation 1 can be eliminated by con-

I sidering only functions in L(R). For in this case we can consider Fourier

transforms of f, of go . (Po Is in L (10), and of j0of (in L2(p)).

Let denote the Fourier transform of pO" Since pOM)= 2 , W e R,

then (p0 of) = 0 f determines f almost everywhere. Since the Fourier

transform is an Isometry from L (M) to L (M), f Is uniquely determined by

g oof. But still:

3 Observation 2. There can be no such even if we restrict the input

signals f to belong in L 2R).

I If such a v0 existed, then let [-M,M] be the support of vO. Let

S XM*2  be the characteristic function (-(M+2).M+2) and let fn(x) = sin nnx,

n = 1,2,..... Then P0*(fnX,+ 2 ) is zero on (-(M I),M+1), hence

3 OO,0O(fnxM+2 ) Is zero on

The difficulty in Observation 2 is due to the fact that we seek P with

I compact support. What if we dropped this requirement? This would be proble-

matic for applications, for then to get better estimates of f from po-f we

would have to process larger and larger subsets of the domain of goof. But

even if we could tolerate noncompactness, there is still a problem of bounded-

ness or continuity.

Observation 3. There can be no (non-compactly supported) continuous linear

operator L from L () to L 2(R) such that L(poaf) = f for all f in
L2(.

L 2 W
The difficulty Is that convolution with p0 does not carry L2 R) Into

L 2R). For example, let € be the approximate identity defined by (x) =
I xI

YC--OT, x e P. Then the L1  norm of 0' is l0€1 1 - 1, while 10c12 2c
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for the L2  norm, and *.op. converges to pO in L2 . If L existed as

described. then by continuity

V LPO) L0lim Oc*Po) a-tsU Ci o(pO) a lIt 0 "

These observations illustrate ways in which the problem of inverting the

convolution or solving the convolution equation p0o f = g for a specific pO

fails to be well-posed (that Is, that the solution f to p0of = g exists.

is unique, and depends continuously on g) even with a variety of restric-

tions on f. Our problem statement in part seeks to find m and ga...
such that the inversion of the simultaneous distribution equations plof =

g1, .... Im~ = gm is well-posed, along with an extra condition on the form of

the inverse. But possibly our observations were due entirely to an unfortu-

nate choice for the distribution p'" Possibly there is a compactly supported

Al for which there exists a compactly supported distribution vI such that

1 S = S. This issue is settled by the following theorem.

Theorem. Let p1 and v be compactly supported distributions on Fn such

that p = 3, the Dirac delta distribution or unit impulse (at the origin

Sin Rn) Then there exist a E n and C e C, C * 0, such that = C6.

the Dirac delta distribution translated to a e Fn.

- Proof. See Appendix

These observations and this theorem a-re primary exanples of the difficul-

ties that are avoided whenever we can use multiple operators .... for

which equation (1) holds. Of course, there is a vast literature and many

approaches to address the difficulties of ill-posed problems such as the

inversion of a single convolution equation 1151, [171 and [18]. Our interest

is in exploiting those cases in which using multiple operators we have a well-

posed inverse problem. In the next section we identify some of those cases.
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i 3. EXISTENCE AND CONSTRUCTION OF DECONVOLVERS

Our problem statement Is typically viewed in two parts. The first part

Is existence, the identification of sets of convolvers p ..... iM such that

I deconvolvers m ..... * exist. The second part Is the explicit representa-

tion of the deconvolvers.

These problems are addressed using methods from the study of analytic

functions of several complex variables. For if p1 is the distribution on

Rn with compact support, then its Fourier-Laplace transform Pl is an analy-in n
tic function on C . Moreover, I^1(z)I, z E C increases for large Izi

(Z 1,z 2 ..... z) (i1zi12]1/2 in a manner which completely characterizes

these analytic functions which are transforms of distribution of compact

support (the Paley-Wi ener-Schwartz theorem, see Appendix). Thus for a given

set of convolvers p 1 . p.. by taking transforms the existence of the

deconvolvers is equivalent to the existence of solutions V,... V of the

analytic Bezout equation

I i(z)vi(z = , z Cn (3)

I i=l

with v .... ' m each in the Paley-Wiener class of functions.

In this form one quickly sees that a necessary condition on the convol-

vers pi is that they have no cormon zeros. Moreover, because the i are

to satisfy certain growth conditions for large Izi, one has a stronger

condition which turns out to be both necessary and sufficient.

Theorem [1), [16). For the compactly supported distributions pi .... Im on

i n there exists compactly supported distributions v ,.... I' such that
m m

p liu 1  5 if and only if there exist positive constants c, and c 2 and
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I a positive Integer N such that

I W 2 2 ctI e C2NZI 1 , )1 N. z (4)

A set of convolvers p1 .... that satisfies the inequality in the

I theorem is often referred to as strongly coprime.

The following sets of convolvers are known to be strongly coprime:

i) on R 2 , the characteristic functions of two disks wherein the ratio

of the radii of the disks has any integer value from 2 to 200

[7];

ii) on n , the characteristic functions of n+ 1 cubes with side

lengths s I .... 9+ such that s ..... Sn+1 are integers that are

pairwise relatively prime and at most one of these integers is a

3 perfect square of integers [7], [11].

The example of the introduction falls within case ii. Another case which

is known is the characteristic functions of certain rotations of three squares

in the plane [7].

Explicit formulas for the deconvolvers have been found for the disks on

F 2  (case i) and for n = 1, and n = 2 in case i0 [5] - [91 and [14]. For

example, the explicit solutions for the deconvolvers vI', V2  for n = 1 in

case ii is the following. For i = 1,2, ai > 0. let X. be the character-

istic function of the interval (-ai,ai), with a2 = V2a Let 0 be any

smooth function. Then uI and v2 such that Z1,V I +Z2 u2 = 6 are given

by

I 2 dd
12 1 dx2  dx3

where
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K1(N) - 8 . 2

2 k "i k

and P2 and K2  are given by the permutation of indices. Note that the

support of vI  Is contained in that of x2. and the support of P2 is

contained In that of X1.

Throughout the foregoing we have emphasized that we seek deconvolvers vi

which have compact support, and we have described necessary and sufficient

conditions on the convolvers p for these to exist. The explicit determina-

tion of whether the p are strongly coprime and the explicit construction of

the deconvolvers is typically too restrictive an approach for general engin-

I eering applications, and new numerical optimization approaches are being

developed [10].

There is, however, a middle ground that we use when we have a set of

strongly coprime convolvers but do not have explicit representations for com-

pactly supported deconvolvers. These alternatives are due to the fact that

the deconvolvers are not unique. To see this nonuniqueness, consider the one-

I dimensional example of the Introduction. Let p and p 2 be compact

supported and strongly coprime, and let v 1 and u 2  be compactly supported

deconvolvers. Let A be any compactly supported distribution. Then it is

readily seen that both v' = + +;keg2 and v = L are compactly
I 2 2 v2 - 'Al aecopcl

I
supported and iv = 6. Going further, it was not necessary that A be

1=1

a compactly supported distribution. That is, we can construct deconvolvers

I that are not compactly supported.

We frequently use approximate deconvolvers even when they are not com-

pactly supported. For example, let V be any integrable, smooth function
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I
nwith integral over IR equal to 1. Then, for 9pT(x) * x,~,a 1 ., s'

approximate deconvolver and viofT converges to PI as T-40. We can

choose, also, that the PI ofT  be L functions. Let f have compact

m support and be sufficiently differentiable. (The function v Is usually

called a mollifier.)

Finally, we can construct approximate, non-compactly supported deconvol-

vers on In solely from the knowledge that the convolvers are strongly

coprime. Let w = (n ) = Re z = (Re z1,Re z2 ..... Re z ) and for what

follows we will need to consider the Fourier transform only on the real sub-

space Pn of Cn Since p e Co(Fn), and with f e Co(pn), with com-

pactly supported, let

D() m ' hi = D ( )' I = 1.....m. (5)I m
E 1A Ml 2

J=I J

This defines h e LI(R n ) such that hep = f (z denotes the complex

conjugate of z). This is the class of deconvolvers that are discussed In the

last section, because from among these one can find optimal deconvolvers when

I there is additive noise.

I

4. PERFORANCE OF OPTIMAL DECONVOLVERS.

While (5) Is exhibited essentially by inspection, the result can be

obtained in a more systematic fashion as well as in a more general form. We

first recall some standard tools, apply these tools to a simple case, and then

proceed to the more general form. The diagram in Fig. 3 represents an
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I

I operator L acting on a function f. Let (temporarily) f be bounded and In

C (Un). Let L 1 , g2 ,...,p be an arbitrary set of a distributions with com-

pact support. For each linear operator defined by ju let be a sample

I function of a zero mean, wide-sense stationary random process that is added to

the output of 1, let In). and let N2 (N1 k 0) be the noise

power spectral density of the process (see, for example, 119] Ch.4, Ch.6).

For each distinct I and j let nI be independent of v i and let each 71

be independent of f. Let Pi be defined by (u.4) = D1#, where , e

C r(V), nP has compact support, and r is sufficiently large so that

(D,;]J e LI(Pn). Let g e L(P n) be defined by
m

g = o(,ij f 4 ,i)*(Li-,). (6)

1=1

I In the usual manner, with E denoting expectation,

m

I E{g} = Z~efe(Vi.'). (7)

U i--1

Let T' denote translation by y, T'(x) = x+ y, let denote inverse
y y

Fourier transform, and let 1 11 denote the Lp  norm. Directly from the

definition of wide-sen , c , ,y and rni.e p-xwer spectral density it

I follows that

Ifg-V)( Ng [N 2ID 1210I2]j(y), (8)

Iy
and, for y = 0, that

* m

E(-E 2) 1 NV 2 ID2 1^1211(9
2 5 i'
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I.

U The simplest configuration for L I all distributlonm equal, all decon-

volvers trivial, and all random processes identically distributed:

IA = PO. Vi-6, N2 - t., for I1,2..... (10)

Then

E~g) = muw *oaf, E{(g-Efg)) 2} = ,NO 0(11I

The utility of (7) - (9) or of (11) is that if L is followed by a

I linear operator U with kernel u (which could model a specific "end-Use")

then one can compare the function (U(E{g})) 2  with the constant function

E((l(g-Eg}))2 ). In the case of the simplest configuration, (10) and (11),

there are the following formulas and bounds.

3 (U(E'g l EUg}22 = 2 (o.', o[ o, (12

(U(E~g)) ((2g) nIU4 0~ ]2f)=mFpo)(2

m. 2 )0111-2 when f L 2 (Rn);

and

EIU~ -E g 2= 1m ^~UN0 O^ 11 (13)
i (2n)

The function E(Ug} is referred to as the signal, its square E(Ug}2  is

referred to as the signal power or energy, and E{((g-Eig})) 2  Is referred

to as the noise power. Typically the ratio of E{Ug}2  to Ef(U(g-EgM 2

is considered or, alternatively, the positive square root of the ratio. Here

we shall consistently use the latter. If this ratio is evaluated at some dis-

tinguished point, the value defines a "signal to noise ratio." We denote by

the evaluation of the absolute value of the function at so.ne distinguished
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I

I point. Given L and for a given choice of #, f. 1, and V define the

signal to noise ratio

YNX (UL) 2fl)(E1g) (14)
[EfU(E(g))

I }{u8E ) )2})1(4

For a fixed choice of #, f, 1, and p. two operators L and L' can be

compared and ordered by (14).

On the other hand, for a choice of #, f, U, and p, (14) Is determined

for the case of the trivial operator in (10) by the pair of functions

MAO and Vi O. (15)

In general, let operators L and L' (for example, as in Fig. 3) have trans-

fer functions and noise power spectral densities A, N2  and 1', N'

respectively. For a choice of 1 we shall say that ULIL' (i.e., "lL

W n
divides UL'") if there exists a "quotient" function q e L (R ) such thatI 2~ [^ 2N2 S 1we
Qu = u'. If lLIUL' and ql2 ul u 2 N'2 , we say that UL k IlL'.

This definition is motivated by the following. At usual, let * be such

that a linear operator 0 with kernel q can be associated with q by

considering qO. Let B be any continuous, translation invariant, linear

operator. For fixed U if UL a UL', then > I . Consequently,

sup YN'R(UL) a sup YAF(LU5L').
9 5

Next consider the operator L diagrammed in Fig. 3 for the case in which

ll' 112.'.'m are distinct and strongly coprime (i.e., satisfy (4)). An

obvious consequence is m 2()l > 0 and, equivalently,

0 * (P (',) 2 ( NO. Pm( N J)) e C 4 n (16)

Consequently we can visualize (16) as is shown In Fig. 4a. A similar
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I ~Illustration cain be used to visualize fC(i)C(u) .0 2 ~...p()

I(;(()iz1(u).(u)i 2 (ai)....;(u)g.(u)), except the "curve" passes through the

origin If and only If f(w) - 0. The power spectral densities are real and

nonnegative (thus we write N2  and choose N k 0). Assume

II
N I M) > 0, W G P n, I - 1, a.. (17)

I We can visualize (17) as is shown in Fig. 4b. The case of strongly coprime

multiple operators has the useful feature that the consideration of (16) and

(17) pointwise in conjuction with (7) - (9) uniquely determines an alternative

choice for the D of (5). This choice will be optimal in the sense it has

the smallest E{(g-Ejg))2 1 among all sets of deconvolvers.

Proposition. Let N. LW(R N ( > 0 for w e Rn, I = 1,2.....m. Then

there is a function D : R n--C m  uniquely determined (almost everywhere) by

the condition that for each w e-Rn, D(w) = (D (w) D2() . .D m(w)) solves:

oMinimize ZzI on the set e CM =z 1 (18)
X ~ 1z =1

In fact

D. ~ (ww) 2D. (w) N. (1w)

i=l N.(

I

Proof. Any z that satisfies (18) Is clearly contained in the linear

subspace of Cm determined by the span of

I((p 1(w). ..... 0), (o.p2 w.0, .. .0 ).... , (0,0,... .Oj ())}. (20)

That is, z I - 0 If PIM)a O. Equivalently, there exists A -
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(A 19 2 .... A m a such that
m m

(z N I(W)z 2N 2().....z mN m()) = (A PI (),A 2P2( .... A MPm (w)). (21)

Ia
Let E' denote Then (18) reduces to

E 2 2 _____ -0

Minimize 'II p 01 on __ _ _ N } (22)

From this it follows that the A i are all real, so that (22) has the form

Minimize E'(X, Ii(w) )2  on {C'Al( 1 (w) (23)

With the new variable Aii(w)I, it is elementary to see that (23) has the

unique solution

i L(W)IINi(w) a

Ai= mi = 2 (for I(W) * 0) (24)m I()l2

Consequently, from (21), the unique z corresponding to the minimum is D(o)

as In (19). u

In addition to Ni > 0, i = 1,2,... ,m, we shall assume N0 > 0.

Further, we shall assume that the Ni are sufficiently differentiable and

that - (I p ) for some integer p. I = 0,1,2....,m (that is, I/N

does not grow faster than IwP). With this we can find * = O(jw - p' s

that (D10) e L 2( n ) and for 0 sufficiently smooth and with compact

support then (D i)' E Ll(,n).

Corollary. For the choice of D i from the Proposition,
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, 1/2 =1 1/2

1= PrID,l 1 Iti . 2  (25)
J j

Let L0  identify the trivial configuration of L in (10) and let Ls

identify the strongly coprime configuration. Unless explicitly indicated to

the contrary, Ls  indicates that the deconvolvers D of (19) are used. The

first of the functions in (25) is the transfer function for L and the

second Is the square root of the noise power spectral density. The corres-

ponding functions for L0  are (15). The mollifier 0 is suppressed but

3 understood. From (25) obviously Ls IL for any operator L. (With an abuse

of notation we use L, L0  and Ls  to denote configurations consisting of

I linear operators and additive noises. ) From (15) and (25) the quotient q

for L = L0 is mPO . Let N2  denote the noise power spectral density of

L s . In the sense discussed earlier let r0  denote the linear operator asso-

ciated with mp0  That Ls IL 0  with quotient mp 0  means L0 = D L s . Then

oL s  has functions corresponding to (2S) .(transfer function, square root of

I noise power spectral density) given by

I =n 0 ,IpI mII[liN]1 2  1i4°12

IL 2
090

j=1 Nj2

i nt UL if ilL IL an [mpoINsM() S v-GNo() on the support of u, and

UL0 k UL s Os mo and ] IN ;-) G 0 M on the support of u.

Thus, whether UL 0 tUL or UL kiL0  holds depends, in part, on whetherThs hthr L0 Us or 0l

one of the following inequalities holds on the support of u from (15) and

I (26)
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_____1M 1(")I ~1/2
I IN() W  'VN (W) 0 M M (27)

0O Z 0 1g.. 02 )S ~ I

I In (27) the notation means that the upper inequality symbol on the left is to

be paired with the upper inequality symbol on the right and lower left with

lower right.

The comparison in (27) can in special cases be viewed from a slightly

I different perspective. First, view the left side of the second inequality in

I (27) as the Fourier transform of a kernel. Define

rm N. (w) a 2 1/2
e~~~ 1 ~iN(W) ] (28)

II
We refer to ; as the envelope transfer function corresponding to the

envelope operator f for a given strongly coprime Ls  in comparison with a

given L If vuif acts on Ls, then the pair of functions associated with

I - L is
5

V e, I-,-NO. (29)

Recall that the pair for L0  is given by (15) (rewritten for convenience)I0

VUo'NW I-mo" (15)

That is, the composition of vrf with L has a noise power spectral density
5

equal to that of LO. If, for example, p0 is real and positive, then it

makes sense to compare (29) with (15). It is easy to check that the condition

,rVe U um 0 (on the support of u) coincides with our definition IlLs 2 ULo

and ump0 ? rVme coincides with what we mean by IlL0 ; ULs . These two

inequalities are precisely the content of the comparison of the right side of

(27). One could say that "m Is the normalization of Ls  to the noise
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I.

I power spectral density of LO .

For either point of view we consider W>= 4W R :() V 1(90 W)I)

n
and W = R: e (W M-) For all U such that u has support

in W> It follows from (27) and the definitions that ULs  ULO.

* Consequently,
N

os ) - __0_L__ I 0 12  (30)

I U#~(i N 012

where 0 is used to denote the linear operator corresponding to the transfer

function m^ 0  of L0 *

Assume P.(0) * 0 and define

1 P : Vt E [0,1) l 0(tw)l > 0).

Note that for IR the usual definition of limiting resolution is sup no. If

supp(u) is compact and supp(u) c no, then -0I makes sense, consequently

lL0 JlIL . Hence, if supp(u) Is compact and supp(u) c W , n 0 then UL0 2!

ilL . Consequently,5

I N
YA'R ( RLs ) 1 10 2L

= _'R(U L 1 N< 1. (3 1)

In general the Inequality cannot be extended to all of W< N fl0 because of

the behavior of 1/p. on the boundary.

YSN9 (UL )
There is no information regarding YN(L Implied by either UL UL0

05 0

or IL 0 aLL . Additional information is needed. For example, it may be

sufficient to know the effect of the so-called "boost" ULot -- Uo LO . In
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I particular. If supp(a) Is compact and supp(s) C 0  then

YA'X(U0° L°) YNR(ULs
supp(u) c W> and 0y- > 2 - 1, (32a)

xn ito)  --7 0LsHand
supp(u) c W < and ___,(ULo- Y,,R(ULo) . (32b)

teFor supp(u) c F 1100 or even for supp(u) * (Rn0 O 0 o, it is often

the case In applications that iL0  is not defined. Since UL s  Is defined

for all I it makes sense in such cases to consider tlL iL

I
I 5. EXAMPLES: OPTIMAL DECONVOLVERS FOR CHARACTERISTIC FUNCTIONS OF SETS IN Rn

Collections of sets in Rn such that the characteristic functions of the

sets in the collection are strongly coprime have been described in Section 3.

Let xS  denote the characteristic function of a set S. Consider the

2case in which the noise power spectral density has the form IizSjj 1N0 , where

11Z S V 1is the L norm of X S (equivalently, the Lebesgue measure of the

set). For such a case, let sets SIS 2 ..s Sm , be chosen so that, for ji =

xS., the pi,12 .... Pm are strongly ccprime. Then, from the Proposition inII
I the previous section,

I __(W)

DI (W) = i 2 (33)

I ~

Hand (25) becomes
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.21/2 1 /2
i ,. ID, I' ' N (34)

J l I P j I1

Let S be any set. let p = ZS0  be its characteristic function, and

consider this to be the convolver in L0  defined by (10) (i.e., m parallel,

identical convolvers). Let the noise power spectral density have the same

form as above, N 2 11ill N0  From (27) and (28) one obtains an envelope

transfer function e d and the associated comparison for these two: a

convenient renormalization by the constant Ifpift1  is made In

;dC m _P ;_(_ m W)l 2 1/2 [PoCMj
-I' J 1/2"iidoll 1/2 G/ (35)1 Po 1 i ll IlI - 11 go 1! 1

For an explicit example let S. c2 be the region in a focal plane of

an imaging device which corresponds to a single light sensitive detector. The

Iexposure time interval is assumed fixed and the image is assumed constant.

Then p is the idealized response function of the detector. (The

actual shape of the response function can be incorporated into the mollifier

I of Fig. 3. That is, if a. is the actual detector response function,
1

and If the deviation of a. from pi. is due to, say, a material diffusion

process that is common to all detectors, then a , = Pi so where 0 models

the diffusion. Such a common 0 would not be deconvolved; one would use
m

I = v. ) Then Pi is what is referred to as the "detector MTF." TheI =
form of the noise power spectral density above is that of many noise processes

in electro-optical detectors, that Is, that the noise power spectral density

is proportional to the area of the detector. Such is the case for infrared

Idetectors and this proportionality is contained In the definition of the fami-
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liar "D ." The above form is also valid for the so-called background limited

case. It also has this form for P3  when the time interval is included as

the third dimension. Further, a background limited slit detector corresponds

I to the above forms for R1 with the slit width as the coordinate. (The

background limited case consists of a relatively small signal of interest

superimposed on a relatively large constant signal so that the noise in the

signal of interest is due to the "shot" noise of the constant signal.) (For

detector characteristics discussed above see, for example, 120, Ch.21.)

In Fig. 5, Fig. 6, and Fig. 7 the transfer functions for such cases are

shown. In Fig. 5, a comparison is shown for the example in P described in

the Introduction. The characteristic functions pI and p2 for the two

intervals (-1.1) and (-vr2,v/), respectively, are strongly coprime. The

envelope transfer function ed is shown and is compared with the transfer

function for the two identical, parallel convolvers as in (35) where g0 = P1 ,

The choice g0 = PI is used rather than g0 = i2 In this comparison because

PI is "better" than p2  in the sense that the first zero of pI (i.e., its

bandwidth) is greater than the first zero of p2. Recall from the scaling

property for Fourier transforms on RI that p 1 (x) = A2(V x) for all x E R

U if and only if ' = P2 for all w e . In making the comparison

we use two (i.e., m = 2) identical parallel convolvers rather than only one

so as not to bias the comparison in favor of the strongly coprime case. In

terms of the applications to electro-optics, the m strongly coprime detec-

tors must make m sequential measurements of the optical signal, and the

noise for each measurement is assumed independent. Consequently, there is an

inherent noise averaging due to these m measurements, and we wish to have

the number of independent measurements the same for both cases. The case of

sequential measurement with identical detectors for noise averaging is exactly

2
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what is done in so-called "time delay Integration" for scanned infrared

detector arrays (21]. Fig. 5 Illustrates the consequence of the strongly

coprime condition: the envelope response is approximately an envelope for the

I modulus of the other two responses and, correspondingly, is without zeroes.

Also, it can be observed that the envelope response decreases approximately as

i/lwI.

In Fig. 6 and Fig. 7 the envelope transfer function is shown for an

example in R , the case of three squares QIQ 2 % of side length l,vvr,

I respectively. The characteristic functions of these three squares are strong-

ly coprime. The comparison (35) is illustrated by graphing the modulus of the

corresponding transfer functions for two subsets of P2 : the w1-axis

I = lI 2) e : w2 = 0) (see Fi6. 6) and the diagonal fw = (w i,2 ) E R

I = 'Y (see Fig. 7). All graphs use the Euclidean distance as abscissa,

2 2 1/2
(w! = (wI+W2) . The comparison illustrated in Fig. 6 and Fig. 7 is for

A0 = XQI" (As before, xQ has the greatest bandwidth and the scaling prop-

erty for Rn has the form p 1(x) A 2 (kx) for k > 0 and for all x E Rn

if and only if knAl 1(kW) = P2(2) for all w E Rn.) The comparison is

essentially the same as that for the two intervals in PI. The difference

between the w -axis and the diagonal illustrates that approximately the

envelope response decreases as [w1-1 along the w -axis and as 1-2 along

the diagonal.

IFrom (35) (and as illustrated by the figures) the following statements
can be made. These are stated as "observations" because the results can not

be given in terms of explicit inequalities. Some notation is helpful. Define
* m

r)= {w E : Vt E (0,1] 1M1(tw)I > 0) and f = 0fl i"  (36)

1I =nI i

Observations. Let PI2 , ... OPm e L (Pn) be strongly coprime characteristic

I
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I
functions of sets in an as considered above. With each p, let there be

associated as in Fig. 3 an additive wide-sense stationary noise with noise

power spectral density of the form Ie I1N2 . Let L be the configuration in

Fig. 3 with deconvolvers determined by the Proposition. Let L0  be the

trivial configuration as in (10) with go = All No = N1.

Observation 1: For U with supp() c Q2. UL s ILO .
n 0 .

Observation 2: For U1 with supp(u) c R - f)it ULs 2! ULo.
i

= m

Observation 3: For 11 with supp(u) c U f. -£2, IlL _ 5 ULO .i=2 s

Observation 4: For U1 with supp(u) compact, supp(u) c 9£2 let DO0 be

the boost on U, ULo --4uagIL (see (31) and (32)). If Observation 3 can0 0 0

be neglected then

I 9 ( l2 I L ) YN9 (UL

YNA (UL 0 ) >1= A19 yA'(UL 0 ) .I
As discussed at (31) it is not possible to extend this to all of ni'

for P, = 0 on the boundary of Q" iowever. it still is desirable to have a

means to compare L with the more well known, more thoroughly studied

trivial configurati- s. In the next section this is accomplished by pushing

the troublesome set 41u= 0} out toward infinity.

I

6. * MORE COMPARISONS: STRONGLY COPRIME VERSUS CHANGE OF SCALE

Let Ls  be the same as above. In the above Ls  was compared with LO0
2 = N2  nteecssP ws

where L0  was chosen to be gI and N I In these cases p was

the "best" in the sense nt C n 1 = 1,2....,m. Here Ls will be compared

with a one parameter family of such L. Define L by the trivial configura-
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tion of s parallel, Identical p as In (10), where N2- hu~ I1 2 and

The primary result of this section Is

Observation for Fixed Number Of Channels. Fix the number of parallel convol-

vers in both L and L to be m. Let the convolvers be characteristic
S 4

functions of cubes on Vn and let the additive noise be as above. Assume
i m R

that U is such that supp() c U { . : @ = 0, J). Then for
j=1

UL lIL for all 0 < 4 5 1. (40)
s 4

Corollary to Observation. For the conditions in the Observation above, it

Is advantageous to construct L using sets that are as large as possible.

Application of the Corollary. In parallel scanned imaging systems with square

detectors wherein the systems are ranked using some U meeting the conditions

of the Observation (e.g., horizontal or vertical bars), the detector size

should be sufficiently large so that the array of detectors fills the image,

and the detector sizes in the array should constitute a strongly coprime

collection. (This application depends on sufficiently high sampling rates.

See Section 1.)

The Observation is illustrated in Fig. 8 for n = 2. For Fig. 8 L is

SSas In Fig. 6: In the notation just above L sis configured from the parallel

convolvers W<1>,p< / >,< vr3>, and p is the characteristic function of the

unit square. For this Ls  the envelope transfer function ed is compared

with V 11/2' as in (35), for 4 = 1, 0.5, 0.2, and 0.1. For 4= 1

see Fig. 6; for a = 0.5, 0.2. and 0.1, see Fig. 8. The observation in

(40) is clearly evident. (Here we neglect Observation 3 of the last section by
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means of a broad Interpretation of a In Observation 1.)

The Observation (40) depends on the following properties. The first,

which is again an approximation, is that for A = 4{ e R n : = 0, 1 ,

the w j-axis,

edIA(w) • CMwj-1 (41)

The second is that - n Hence, for n a 2, for1 12 lip 1  1/2'
II p<4 1 II 1

1.and for w A AM 1i1< 1,2;'2;: G 19^4l<IC 6) 1_'

- 11 1/2 - 1I ll1  , <4 II1

Fig. 9 and Fig. 10 show two counterexamples for cases not addressed in

the Observation. Fig. 9 is for the case of the diagonal in R2 , and Fig. 10

is for n = 1. The Observation fails on the diagonal 2) =

4Wm= (w o2 ) e 2 w = :2 } because

I edID(w) m clwI1-2. (42)

It fails .for R because (41) holds.

If in place of characteristic functions of cubes one uses characteristic

functions of disks on R 2. then the relationship between ed and

<4> 1

is intermediate between that of the w.-axis and that of the diagonal for
J

d (W) = Ci1-3/2 (43)

The significance of Observation (40) is that it provides a qualitative

lower bound for the performance of the strongly coprime configuration. To the

extent performance is characterized for the UL .. the "envelope" consisting

l of the collection over all 4 is a lower bound for the performance of IL.

All of the above has focused on performance away from the origin. If the

I
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I figures are rescaled so that the gau<> appear fixed with a sequence of Ls

constructed from convolvers of Increasing support, the Observation Indicates

that nothing Is sacrificed away from zero while the envelope transfer function

near zero is substantially Increased. That Is, ULs k IL represents a sub-

stantial enhancement near w = 0, not merely approximately identical perfor-

I mance. On the other hand, this uniform improvement is for the case of U

supported by the axes. For the cases off the axes for cubes and for the case

of disks there is a trade-off between some loss away from zero and the gain

near zero.

I
I APPENDIX: REVIEW OF DISTRIBUTIONS OF COMPACT SUPPORT

We present here a short review of some properties of distributions of

I compact support in Rn (sometimes called generalized functions). The impli-

cit reference throughout this Appendix is the very clear monograph [22].

The simplest example of a distribution of compact support Is obtained

from a continuous function F of compact support. (That is, F is zero out-

side a bounded set In Fn.) One associates to F a scalar valued linear

loperator TF  acting on infinitely differentiable functions f by the rule

<TF, f> JF(x)f(x)dx.

The fact that supp F is bounded is what makes the above integral finite and

well defined for an arbitrary f. This linear operator TF Is called a dis-

tribution of compact support.

I If the function F were not only continuous but also continuously dif-

ferentiable, we can similarly associate a distribution to each of its partial
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derivatives. Their relationship to TF  is given by integration by parts:

<T ,f> - -fdx =- F-dx --<TF >.

OF ax ax FOaxJax i nJm 1Rn  i ix

This motivates defining the derivative -L T of the distribution TF by

the formula

< - f> -<T -f

8x F'P F~x>
j fJ

I
which does not require tl'at F be differentiable. One defines in the same

way more distributions DaT = aT a = (al ... a ), la 
F ~aXl. .. 'axan ' 

S I + ... + a, by

<DaT f> = (-1)1&1<TF Da f>.

Further, for any pair of continuous functions F,G of compact support,

and any multiIndices a,f, the operator DaT F+DTG

<DaTF+ D"TG, f> : <DaT Fl f> + <ITG' f>

is a linear operator on the space of infinitely differentiable functions.

The collection of all finite sums of this kind is precisely the space of

distributions of compact support in In  That is, for a distribution of com-

pact support p we mean a scalar valued linear operator which can be repre-

sented in the form

IaN a

for some integer N and continuous functions F of compact support ([22].

p. 741).

I
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Let us indicate how the unit Impulse 6 at a point a a R can be

written In the above form. Let

LUx) - x - If x k a-ax={ if x Za

and let # be any twice continuously differentiable function of compact

support such that for some c > 0 (x) a I for a -c x -5 a+c. Then

(OL)" = O"L+2#'L + L", and the function O'L' is continuous in spite of

Ithe discontinuity of L' at x = a since *' = 0 near a. Letting F = OL

and G = -(O"L+20'L') we get

a 2 TF +TC*
dx

The space of infinitely differentiable functions in Rn  is usually

denoted by & (or &(R n ) or C*(R n)) and the space of distributions of

compact support by C' (or 9'(R n)).

We can essentially work with distributions of compact support as if they

I were ordinary continuous functions of compact support. In particular, for.a

distribution T e 9' it makes sense to compute its Fourier-Laplace transform

T() for < e Cn. Namely, let C.x = C1x1 +... +Xn (x e Rn , C E C

*then

I() :<T,e-iC'x>,

where i = ViT. For instance, for the unit impulse 6a at a point a E n

1<-a
we have a (C) = e-

From the above representation of the distributions of compact support one

can see that the function C--T(<) has two properties. First, it is an

analytic function in the whole of Cn (i.e., an entire function). Second,

there are positive constants AB,N such that T satisfies everywhere the

estimate
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IT()I :S A(.I+I)N e
B I I,

Im C = (I. .C .Im Cn). It Is usual to call the space of functions satisfy-

Ing these two properties the Paley-Wiener class, PW(C n).

The classical Paley-Wiener theorem for functions of compact support in

2
L can be extended to the case of distributions of compact support as

follows.

Theorem (Paley-Wiener-Schwartz). The Fourier-Laplace transform is a

one-to-one correspondence between the spaces C'(pn) and PW(Cn).

Recall now that if F and C are continuous functions of compact

support then their convolution F*G is given by

SF.G(x) J F(xy)G(y)dy = JG(x-y)F(y)dy

I
and it is again a continuous function of compact support. Moreover, if one of

them is continuously differentiable, say F, then x (F-G) = - IG. This

observation allows for the definition of convolution of distributions of com-

pact support in such a way that if T,S e 0' then T*S = S-T E 8'. The unit

impulse at the origin 3 acts as the unit of this product T*S = T. Further-

more, (T-S) ( ) T( )S(C). so that the convolution becomes ordinary pro-

duct of the analytic functions T and S.

In this paper we were interested in solving the equation

IlUlIe + . .. + P m, UVm =

where.........j are given in C' and we need v ,.. v e '. Using the

Fourier-Laplace transform this equation Is equivalent to the analytic Bezout

equation
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with unknowns fI .... f N PW(Cn). In particular, to solve this equation Is
1n .

necessary that the functions I 1 ,..... a have no common zeros in C n.

In the text we raised the question of whether one could find a deconvol-

I ver v e 9' for a single convolutor p e C', i.e.,

I -= 8 or equivalently a()u() 1.

We need that p(C) * 0 for every < e Cn . It follows that there is an analy-

tic function h in Cn such that

U a h(C)AW = eh )

Since p is in the Paley-Wiener class one can show without difficulty that

I lh( )j :5 A+BIIm <1

for some positive constants A,B. Therefore, by the Liouville theorem, h

I must be of the form

I h(C) = -i(a11' +... +an<n + c

for some a = (aI ... an) . n, c E C. This proves, by the the Paley-Wiener-

Schwartz theorem, that p = C6 , for some constant C e C.a

Having no common zeros is not Pnough to solve the analytic Bezout equa-

tion, the necessary and sufficient condition is the following.

Theorem [1), [161. Given p1 ... .. E ,( n), the necessary and sufficient

I condition for the existence of deconvolvers vi ... ,U e &'(Rn ) is that there

are constants c > 0, M > 0, C > 0 such that

21/2 e-Chin <j Cn
;A C for all < eC

I
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I

Ths is a purely existencial theorem and the work in [5) - 110) consists

in obtaining explicit choices of deconvolvers P , ..... V This is not

Itrivial. A portion of the work [7] and [11] also consists in finding simple
and practical examples of pl, .... PM that satisfy the above necessary and

3 sufficient condition f6r the existence of deconvolvers.

I
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(a)

I Figure 1. (a) Multiple parallel linear operators with distinct distributions

PiC Single operator (b) and the multiple parallel operators with identical

distributions p0 (c).
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A local version of the two-circles theorem

I
* by
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1. Introduction. -

One of the oldest questions in integral geometry has been

that of recovering a function f in Rn  from the knowledge of

its average over balls. It is easy to see that unless f decays

sufficiently fast at infinity the average over all balls of a

fixed radius could vanish without f being identically zero. It

is not always possible to assume such decay but a very elegant

result of Zalcman [20] and, independently, Brown-Schreiber-Taylor

[10], describes explicitly a countable set En such that

averages over all balls of radii rl, r 2 suffice as long as

r/r 2 f E n. This-"two circles" theorem can be described as

saying that the mapI
C(Rn) + C(R n ) A) C(R n )

f f J f(y)dy, f f (y)dy)
B(x,r ) B(x,r 2

I is injective if and only if r /r 2 j E .
2 n

(B(x,r)={y R : jx-yj<r}). Under slightly stronger conditions on

the quotient r /r 2  this map has also a continuous and explicit

inverse [8). This result and other variants ot the so-called

-ompeiu problem have ben generalized to symmetric spaces 'see

t'.e surveys [21], [1] for positive results and their limitations)

In practical situations of a tomographic nature one is

limited to balls that fit into a fixed region 0. One could take

smaller and smaller balls when approaching the boundary ai of

D, this is roughly the situation when we consi3er the case
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U a * unit ball of Rn as the hyperbolic space, but it is clear

that it might be hard to accomplish if we are dealing with

physical devices whose size cannot be made infinitesimally small

or cannot even be changed at will. It is this kind of problem

that we call a local version of the two--circles theorem. The

main difference with the above mentioned results is that we do

I not have any longer the whole group of Euclidean motions at our

disposal which was the crucial ingredient lying behind the two

circles theorem and its generalizations. The Inversion formula

of 18] would allow us to reconstruct f away from an but gives

no indication of whether we could change the values of f in a

I collar-like region near B without affecting its average.

There is some recent work on systems of convolution equations in

convex domains which deals with this type of question [4] but the

* hypotheses required are far too restrictive to be satisfied by

our simple looking problems. Nevertheless, using a combination

of ideas from classical harmonic analysis and results of Cormack-

Quinto on the Radon transform on spheres [12] we are able to

prove the following.I
Theorem. - Let r ,r 2 be positive numbers, r /r 2 4 E ,

an open subset of Rn such that every point lies in an open

ball contained in 0 of radius strictly larger than r1 + r 2.

If f E C(11) satisfies

J f(y)dy - 0 for every B(x,r ) C 1, j - 1,2
B(x,r
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then f E 0. Furthermore, this statment does not hold if 11

fails the above geometrical restriction.

The method of proof allows us to generalize this theorem

greatly, providing in particular new local mean-value theorems

for harmonic functions.

We will like to express our appreciation to Professor L.

Zalcman who called our attention to these problems.

The second author wishes to thank the Mathematics Department

of the University of Maryland for its hospitality while this work

was carried out.

2. Preliminaries. -

We will follow the standard notation for distributions found

in [14). We denote B(x,r) = {yEn: Ix-yl<r}(r>O), B(xr) its

closure and Xr the characteristic function of B(O,r). Let

be an open set in R , r = {xEn:d(xS c)<r1. For a locally-

integrable function f in an open set 0 the averageI
(1) A (f,x) - f f(y)dyr n

w r B(x,r)
n

is defined for x Q ( . Here W is the volume of B(O,1). If
r n

we let ir r /w n r , we can interpret this average as a

convolution and hence it makes sense to define it for f E D'()

giving a distribution Ar (f) in V'( r), namely

A (f) = f * i . Therefore, for uniqueness questions, if the
r r

averages of f are zero, by restriction ourselves to n , £ > 0

small, we can assume f E C M Henceforth, all distributions with

vanishing averages will be assumed to be C- functions in Q.

22
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For r > 0, we denote by ar the distributions defining

I the spherical average

(2) A r(f,x) - n 1  f(x+ry)dc(y) (Or *f)(x)

I
do is the normalized Lebesgue measure on S n - 1

I For T E E' the Fourier transform

I(IC
T(C) <T ,e >', (xlC) - i cisIx

is an entire function in C n which satisfies, for some

A, N > 0, the estimates

I
(3) I1'€ )l ,4 A(1'+1 CI)N exp(H(ImC)).

nn
where C = + i, , ,y E R , ImC = 'n and H is the

supporting function of the support of T, i.e.:

I
H(n) = Max{(xlrn):XfsuppT}

Note that H is also the supporting function of cv(suppT), the

convex hull of suppT. The Fourier transform is an isomorphism
n) n

between the convolution algebra E (Rn) and E (Rn), the

algebra of entire functions of exponential type and polynomial

growth on the real axis.

A distribution T will be called invertible (or T is

slowing decreasing) if whenever S E (R ) and S/T is an

3.4
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entire function, then there is a distribution U E (,n ) such

that U = S/T, that is

I
(4) S T * U

I
and we have the identityI
5 ) Hs = HT + H

or, what amounts to the same thing

I (6) cv(suppU*T) = cv(suppU) T),

I
where, for two sets A,B C Rn  we have A ± B = {x±y;xEA,yEB}.

We will need to use that Vr is an invertible distribution.

This will follow from the explicit formula for 'r given below

and the characterization of invertible distributions: T is

invertible if and only if there is a positive constant a such

that for all E Rn

I(7) Max iT +T) : Y1 ER n , i < a . log (2+ I i)} (a +l ) - a

The Fourier transform of a radial distribution T is a

radial function, i.e.: if:

I
<T,fOA- 1 > = <T,f>

I
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for every A E O(n) then1
T() T(A.C)

for every A O O(n), C E n and depends, for ,Rn only

on JEJ. Hence we consider the associated even entire function

T of one variable by

()2 a 2 2

(8) T(W ) T(C) and T(C) n +* .++ 2)I
' Rn

Let us call E (R ), the space of radial distributions. This

correspondence establishes an isomorphism between the algebras

I (R n ) and E (R). Using this notation we haveI0
n-2

(9) 1 r (t) = n2 2 )n (rt)/(rt
r ~ 2n

n-2 n-2

(10) o(t) = 2 2 f( ) (rt)/(rt) 2
r

2

I and, more generally, if f(x) = (IxI) is a radial function of

compact support

(11) f()) = P(t) ( 2 n)n/2 n12= n-2 fO (P) Jn-2 (tp d ] ]t
I 2 2
t

To show that 1r is invertible it is now sufficient to

recall the asymptotic development of the Bessel functions (19] on

the positive real axis
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(12) t1(t) C c os(t- --- ) + o(t- 3 )

It follows, for I0 1 and some C > 0
I I n+1

IIMa x lv (+ n l E Rn' ,I nl T 1 : lC 2

which is the condition of invertibility.

From (12) we also obtain 1-acMahon's asymptotic development

of the positive zeros ak, v  of J3

k(v V<*'

0 < a, < a 2,v

U
(13) ak,V = (2k+1)- + (2v+1) + 0(1/k)

which will be used further on.

3. Series development of mean-periodic functions.

Let n be an open convex set in Rn and

K = cv(suppa), v E E (Rn). We say that a function

f E C (8-K) is mean-periodic with respect to 1i if

(14) v*f (x) = <u yf(x-y)> = 0 for all x S

If an exponential-polynomial, that is a finite linear

3 combination of terms of the form xj  ei(XIC)

I
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(xjox 1 "' n k N, 1 C k 4 n), is mean-periodic vith respect

to 9 then the frequencies C must satisfy

;(C) - 0 since

(15) (ei(" C)(x) =

I When the zeros of V are simple no non constant monomials

can appear. More generally if a monomial xj appears with non

zero coefficient then

I a

I for the corresponding frequency C.

For n = I there is a well-known series development for

such functions in terms of the exponential polynomial solution of

the same convolution equation (14) due to L. Schwartz [18], [15],

[13]. The case of interest for us is n ) 2, ij invertible. In

this case, a development in terms of integrals over the zero set

of V has been proved when f = Rn [6]. For 0 arbitrary

I convex set, a similar development has been proved in [4) but only

for a very restrictive class of invertible distributions. In all

these cases one obtains also some knowledge of the behavior of

the terms involved in this development. Unfortunately, the

distributions 1 , though invertible, do not satisfy the

conditions required in [4], as was shown (for a different

3 reason) in [3]; moreover we are interested in Q - B(O,R).

Therefore we cannot depend on any of the previously known

I
.... .... ... .... ... ... ... .. ..... ... ...... ..... ..... .3 .8



I
results. We obtain here a series development without additional

information on the coefficients that appear in It; nevertheless

the existence of this development Is all we need later.

Proposition I - Let 1 be an open convex subset in

Rn (n)2), v ( E (R ) an invertible distribution,IW
K = cv(suppv). Any function f ( C (R-K), mean periodic with

I respect to v can be written as

I
(16) f(x) I P.(x) (x(R -K)

j>1 J

with Pj exponential-polynomials also mean-periodic with respect

to P, and the series is convergent in the C -topology of

n - K. Furthermore, given a sequence (sj )j> of positive

numbers, letting P0 
= 0, we can chose the P. so that the absolute

I value of all frequencies in Pj+1 exceeds the largest absolute

value of the frequencies in P. by at least s.

Proof. Let us show first that, for any s > 0, the exponential

polynomials which are mean-periodic with respect to v and whose

frequencies lie outside the ball of center 0 and radius s

in Tn are dense in the space N = {fEC (n-K):P*f=O in 01. N

is a closed subspace of a Frechet space and we only need to showIf
that if V E E (S-K) is orthogonal to the above exponential-

polynomials then V is orthogonal to N. Hence (v) is

divisible by V at every point of n\ B(O,s). Since n > 2,

by Hartogs' theorem, (v) /V is an entire function. Since V
n

is invertible there is a distribution T (E (R n ) such that

3.9
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We need to know where is the support of T. By (6)

cv(suppv) cv(suppP) + cv(suppT)

* or

Ucv(suppT) -K =cv(suppv) C X

By the Hahn - Banach theorem one concludes that

cv(suppT) C fl

Hence <v,f> =(V'f)(O) = (T*U1*f)(O) - <T,Iz*f> =0 for f E N.

To end ..he proof ,f the proposition, w,- pick an exhaustion

of al - K by convex compacts sets Kip hence we can find Pit

exponential-polynomial with frequencies lying in

IC CEn:;(C)=o't~I>s I such that

suplf-P 1 < 1.I I1

Let 01 = maximum of the absolute values of frequencies in

P*We can find P 2  with frequencies in

I0 1Cg >~(~ a 2, +0J such that

ma uUPID 0 (f-P I-P 2 )1 4 1/2

______ ___ _3. 10
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Continuing in this fashion we obtain the desired expansion. 0

Remark. One can eliminate the requirement of v being

I invertible by using [14,16.4.1).

From (9) we know that the zero variety of Ur is the union

of the hypersurfacesI
(1 7) 2 2 2 2

= 1 +" .. +C n X k..

where X = akn / r
. We disregard temporarily the dependence

on r though it will play a role later on. Furthermore the

function Pr (t) vanishes at t = k  with multiplicity one, in

I fact

n-2

(18) d - (t) = -n2 2 r(-)r J (rt)/(rt)n/ 2I18)dt
F r2 (n/2)+1

I and well known properties of Bessel functions show that this

expression does not vanish for t = Xk .  Using the asymptotic

expressions (12) and (13) we obtainI
( 

n+1 n+3

Sdu r( r 2 (n-1)/2 r(/2)(1)k+l /(r)
2  + O(k 2

I
We introduce some auxiliary radial distributions T by theI r,k

formula

r (t)

(20) T Ct) - 11r _t)
r~kI -
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They are even and entire since Iu (*A k 0. Hence they

correspond to radial distributions (in fact C 1 1 functions) whose

Isupports are contained in the support of V r#'i.e. B(O,r).

Furthermore they satisfy

(21) (A+ A )T =-LI andIk r,k r

k n+3 n+5

(22) T~ k r 2X k =const.(-1) Xk 2+ O(k 2

We remark that these distributions have conspicuously

appeared in previous work on the Pouipeiu problem (21, (7).

Proposition 2 - Let r > 0 be fixed. For any p, 0 < p < a, we

Ucan decompose a Pin the following form

(23) a =V +~ Ii S

where S Pis a radial distribution, whose support satisfies

(24) supp S Pc B(0,max(r,p)-r)

Iand V Pis given explicitly by:

(25) V I - ) AT

hence supp V 10C i(o,r).
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Proof. 4e consider the series

ao ( k )2

(26) g(t) 2- t T (t)
k>m k T r,k (I k)

The coefficients I.k 0p(Xk)/Tr,k(X k  are uniformly bounded

by a constant depending only on p as it can be seen from (10),

(13) and (22), since Ak - const. k. Therefore, if

Itl 4 R 1 k 2R we have It T k(t)l 4 const. k 2 which

guarantees the convergence of the series, and shows g is an

even entire function. We can obtain more precise estimates by

picking a sequence of circles of center 0 and radii1
R. = (4j+n+5)w/4r, j = 1,2,..

Decomposing the sum into those terms where

Ak < 2R. and Ak ) 2R. one can estimate the second sum over

Itl = R by

Max it 2 r(t) . 0 (p)m ltj=R.

The first (finite) sum can be estimated by

C (p)(Maxlt 2 lU(t)) (Max 2 2
It:R rj O<Ak<2Rj Ikt I

where AJ0C is the region obtained from Itl - R by removing

disks of radius C, 0 < C very small, about k . One can

then see, without difficulty, that the last sum is estimated by

const. -I  In any case we obtain as a final estimate

3.13



I
I

Max Ig(t)I C C(p) max It 2 (t).
It I(R. ItICRj 

I Thus g defines a radial distribution of order 2,

V p by V - g, one can see V is given explicitly by (25).

We also haveI
~n-V 11r h,

with h even entire function since g(tx ) = V (ixk) = (±X k

by (26). Since V r is an invertible distribtion it follows

h = S for some S E e' (Rn). The identity (6) givespp o

U
(27) cv(supp(a -v )) = cv(suppS ) + cv(suppu ).P p p rI
There are two cases to consider. If p ( r, then the support on

the left hand side of (27) is contained in B(o,r) and

cv(supp S ) = {0}, which says S is a polynomial in the

Laplace operator; if p > r then the left hand side of (27) is

contained in B(o~p), which says cv(suppSp ) C B(o,p-r). 0

Remark The decomposition we have just given in proposition 2

works also if we replace a by any radial distribution. We

need onlN ' change (t/Xk) 2  by (t/Xk) 2" with q convenient

I non iegc a integer. In particular there is such a

decomposit. with G o . the Dirac mass at the oriqin (take

n+

4-

I
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I
Corollary 3 - Let f be a V~ r -mean-periodic function in

c"(B(o,R)) (R>r). Let Jx0  < R - r. Then, for any p,

0 < p < R - Ix we have

I )(28) ( (f'X ' )( 0 - k A (T .f)(x)
P) T r,k 0k>1 Xk Tr,k (Ik

i Proof. It suffices to use (2) and (23). 0

4. Local two-circles theorem.

Let rl, r2  be two positive numbers and consider the

distributions 1 , . They will have no common, mean-I ~rl r 2
2

periodic, exponential-polynomials if and only if l and an

have no common zeros. By (17) this occurs if and only if

r I /r 2 + quotient of two zeros of Jn/2

The set

I
/rz, 2/(j~j,

kn/2 jn/2=1(j k<-]

is the exceptional set described in the two-circles theorem.

Proposition 4 Let R > rI + r2, r 1 /r 2 f En. The only

function in C (B(O,R)) which is mean-periodic with respect to

both Vr and U is the zero function.I Ir_2

Proof. We assume r1 <r 2. Let f E C(B(O,R)) be v r

mean periodic. By proposition I we have

3.15



I

I f(x) - [ (x) (IXI<R)

I
where the frequencies appearing in the exponential sums P lie

in

{ECn: r (C)0} = U {CECn: C2 =(a n,2/rl ) 2 } = U vk.
I 1  k) 1n/2 k>1

We fix now k ) 1, and consider T .*f which is in

C'B(O,R-r ,furthermoreI
(29) T *f= T *P.

r Il k> j)1 rl"

~~i(xI * ) he
I If P. (x) = C e then

IT r=~ * j Trkjjei(xCj,)

r I £ jJ' 1 1 j,

but T r, j) + 0 only if C . E k in which case we obtain

the value T (X k ) 0 (where X is computed with respect
r r1 k k k

to r1 ). ThereforeI
(30) T k*f = T P

r 1 k 1 k>1 jk

where PJ,k is the sum of the terms in P. whose frequencies

lie in Vk@ This series is convergent in C'(B(0,R-r )) , We

convolve now with Vu2. We obtain

4r 2 *Tr 1 ,J * r 1 ,kt k r2  kI Vol J,kI 3.1

• 3.16



I
I

since P r is also a radial distribution. The expansion (31) is

242
valid in C (B(0,R-r 1 -r 2 ))• Since f is also ir - mean -

periodic we have

I
0 = (T *i *f)(x) = ) (k)(T kf)(x)r ,k r 21r2 k r 1A

i1' 2 r2 1

for lxi < R - r I - r 2 . The hypothesis r,/r 2  En  now implies

that ur 2(k) + 0. Hence

I2
(32) (T r k*f)(x) = 0 for jxj < R - 1  r

On the other hand we have (by (22))

*2)(T kf) C(f*r 0 in lxj < R -r
k 1k  1

I hence T k*f is a real analytic function in lxi < R - rI . Wer ,k

conclude that

(33) (T k*f)(x) 0 for lxI < R - r1

I Applying now corollary 3, formula (28), we have

I
(34) A P(f,x) - 0 whenever lxI < R - r1 , 0 C p < R - lxi

(We are allowed to take p - 0 by continuity). In particular

I
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U f(x) - 0 for IxI ( R - r

I
To finish the proof of the proposition we need to show f

I is zero in the remaining annulus, we do that using (34). It is

at this point that we use Cormack-Quinto [12]. For any y

B(0,R), consider R(f)(y) f A yj/2(f,y/2). This is the Radon

transform on spheres through the origin discussed in [12). We

want to show Rf(y) = 0. We only need to verify that the

conditions stated in (34) are valid. Here

p = jyI/2, x y/2, hence

I R - Rxi = S- i Y L R - p > R/2 > p2

I
The only condition left to see is that lxi < R - r. . We

have 2r I < r + r2 < R hence rI < R/2 and R - rI > R/2,

therefore IxI < R - r, holds.

I By [12, corollary 2] f(y) 0 0. (We note that in 1121, they

require that f C (Rn) while we only have f E C (B(0,R)) but

the proof of corollary 2 depends on an explicit inversion formula

for the Radon tran-form on spheres which uses, for each y, values

of f in a neighborhood of B(O,IyI).) 0

Remark. The crucial point of the proof above is (32). One

does not really need the whole strength of Propositon 1 to obtain

it. One can get by using the density of the exponential

I polynomial solutions in the sub-space N introduced in

Propositon 1. Nevertheless, we feel that the proof is clearer using

the expansion (16) as we have done.
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we want to show that the condition R > r, + r 2  is sharp.

it is easier to show this under the slight restriction that

r 2 /r, isa not too weil approximated by elements in En'

Definition. - For N > 0, we say that a positive number is

N-veil approximated by points in En if, for every 1 )0 1,

Ithere are indices j,k such that

(35 r - CL /aj

3 wer ~k k,n/2

Proposition 5 For any N > 2, the set of numbers N-veil

approximates by E n has zero measure in (0,-)

Proof. Given p,q, 0 < p 4 r 4 q and v > 0, from (13)

3 we have

a k,v a k (2 k+l)lrF/2 + ( 2 V+1-)11/4 + 0( 1/k)

Therefore, if r satisfies (35), for I ), 1, ye have

(36) Ir-i - k + Ar + BI 4 C

3 for some constants A,B,C. Hence

Ipi - C1 C k C q j +C 2

for some constant CIO C2 > 0. Hence the cardinal of the set

of k satisfying (36) is bounded by Cq-p)j * L, L constant > 0.
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Now, the set of N-well approximated numbers in [p,q) is

I
(37) n U {r: porlq, jr-a k/aJ vl/

1:01 j,k>l

For I fixed, the Lebesgue measure

I n
I U {r:p~r4q, Ir-ak/aIl C AjN 1 (q-p.N. 4 C3

j,k j)1 I

I (C3 > 0) since N > 2. Therefore the set (37) has zero measure

and by letting q = p + 1, p E U we obtain the proposition.

It is interesting to compare proposition 5 with [8, Lemma

I 2.1] where examples of numbers which are not 2-well approximated

by En (n=2) are discussed. It might be that these include all

rationals + I or all quadratic irrationals + 1, but no such theorem

seems to be known. Also, it is easy to see that, for N < 1,

every positive number is N-well approximated by En.

I Proposition 6. - Let rl, r2 be two positive numbers such

that r2 /r I is not N-well approximated by En . Denote by

) the positive zeros of 1 • There is a positive constant

U C such that

l (38) ir2(k) I  C n-
kI2

Proof. Let us denote ak a k,n/2" Recall that Ak - ak/r I and

that

Or(t) - const. :n/2(rn/2
3.0 (r
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I

From the asymptotic development (13) we have

I 0 k+1 -ak = + 0(1/k)

I
Hence, if k is fixed and Jk is chosen such that jr -a.

* is minimal we have

(39) E k  r k= Jr -a I 1/2 + 0(1/k).

Ik
Let us distinguish two cases: £k 4 W/4 or not. In the second

I case we have

Icos(r A - (n+1) W)I = Icos(*£k+(2j +1) 1~ +0(!)Isr2 k 4k k 2 k

I Isin( k + o)/k))l > + 0(!) ) c o > 0

for large k. In this case the asymptotic development (12) gives

the estimate

In+1

'r 2 (X ) C 1  k 2

for some C, > 0 and all large k.

By hypothesis we have that for all J,kI
r2I a (C2

I
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I Therefore £k ) C3/AN-i (C3 > 0). Suppose also £k < w/4. By
kthe mean-value theorem there is a kbetween a. and r2X k

k

such that

Jn/2 (r2Ak n/2) 1_&_

(r 2k )n/2 - r 2 n/2+I (r -a. )

(Recall il 2  k) = 0.) Note that 6 k = It-ai I < Ck < ?/4.

Again by (12) we have to estimate

cos( - ( n 2), = cos(*6n+(2j +1)!.+(nI)ir +O(1/k))

44 °s * k+ 2k+ 2 ( )4 4 (1k)

I = cos(±6k+jk1+O(I/k) )

I
t cos 6k + 0(1/k).I

The n

Ic
(k j n 1 4(C 4  > 0).

I 2 kN-i+2
k

Since N ) 1 the estimate (38) holds in both cases. 0

Proposition 7 let f be a function inLI1
Lo(B(O,R)), g ( L Io(B(O,R)), suppg C B(0,r), g radial.
boc boc

For Ix01 < R - r and P < R - r - Ixol we have

I (40) X (fggx) (A1 j(fxo)*g("))(y) (Iyl-P)

I
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U (The notation indicates that we are convolving in the variable

denoted by a dot).

Proof. Recall that the average X (f,x )can also be computed

I by

X (f,x 0 f f(x0 +Ay)dAI p 0 0(n) 0

where y is any point with lYl = P, 0(n) is the orthogonal

group and dA is the normalized Haar measure. Let

*(y) = 1'1 (f ,xO)*g('))(y)

* we have

(y) f n f f(X0 +A(y-x)dA)g(x) dx

f =1 (f(X 0 +A(y-x))gfx)dx)dA
0(n) R

Set u = Ax then g(x) - g(u) and dx = du Hence

#(Y)- f (fnf(x +Ay-u)g(u)du)dA
0(n) R

W A (f*g,x 0

ICorollary 8. Let g be radial integrable function of

compact support and a a positive number. Then
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j 2 (slz I J2uIyI)
(41) g(x)* n-2 • (Y) g(Q) n-2

(alxl) 2 (lIy ) 2

Proof. Let E Rn  be any vector with J.J - a, then

(42) (g(.)" e ( l'))(y) g()i( fy)
(g .) ~ i( ly

; (a) e

U On the other hand

x (e'"'",o) = P (a)I ~pP

n-2 i n-2 (OP)

==:2 r(n/2) 2 n-2

(Op) 2

I Applying now to (42) proposition 7 we obtain the desired

formula (41). 0

Proposition 9. Let r,, r 2 be two positive numbers such

that r 2 /r1  is not N-well approximated by En . Let R be any

number, max(rl,r 2 )<R<r 1 +r 2. Then there is a non zero radial

function f E C"(B(O,R)) which is mean periodic with respect to

Srl and r

Proof. Let # c D(J0,r I),# 1 0 such that supp#C [Rr 2,r [

I It follows from [16, theorem 2.1 page 247] that # admits a

series development of the form

I
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i Jn_(Akt)

n-2 k

(43) t) k 2 n-2
k)1 X t)_2

where Ak = fk /r . This is the Sturm-Liouville expansion for, k n/2 1

a boundary value problem singular at t = 0 and derivative equal

to zero at t - r1 . It can be seen by successive integrations of

parts thatI
(44) laki = O(k - p ) for every p > 0.

Since r2 /r, is not N-well approximated by En we see that

bk = ak/r (Xk)

satisfies the same estimates as ak (Proposition 6) Hence the

* function

Sn- 2 (Aklxi)

(45) f(x) = bk 2 n-2
k)1 (Xklxl)2

is a C radial function in Rn , f j 0, . And, from corollary

8, it follows that f is 1r mean-periodic. Furthermore

I n- 2 (Iklxi)
(u ')(x - ii(A )

r )(X) b k 1i r k n-22 k>)1 2 x12I(A.k j xJ )2

n *(lxl)

I
I
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I
which is zero in B(OR-r 2 and therefore the function f

restricted to B(O,R) is P' and it mean-periodic. 0

The above propositions can be summarized by the following:

Theorem 10. Let r, > 0 and r2 > 0 be such that

r 2 /r I ( E n  The necessary and sufficient condition on a open

set n of Rn  so that the only distribution T E D,(o) which

can be mean-periodic with respect to both 1ru ar- 1i is

T = 0, is that 0 is the reunion of balls of radii strictly

larger than rI + r2.

An amusing corollary of theorem 10 is the following:

I Corollary 11 If r2 /r I  E 2 , r + r2 < R and f E C(B(0,R))

* then the conditions

f f(;)dC = 0 for every z, Izi < R - r.(j=1,2),
aB(z,r. )

I imply that f is holomorphic in the disk B(0,R).

5 . Generalizations

After the paper was written, we became aware of the work of

I J.D. Smith [171, in which local versions of certain two-circle

theorems are also proved. Smith's results, which require

R > 2r + r2 are less sharp than Proposition 4; nor does the

method C: proof seem to generalize to the other problems discussed

in [201 , e.g. the converse of the mean value property for harmonic

I functions. The aim of this section is to show that the methods

used above do generalize.

I
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Definition. We say that a radial distribution V of

compact support is hyperbolic if:

i) is invertible, and

(ii) there is a constant C such that every zero

X of 1 satisfies

I JImXJ :5 C log(2+AI).

Theorem 12 Let U1, 2 ." be a (possibly infinite) family of

radial distributions of compact support, cv(suppuj) = B(O,r.).

Suppose z Cn =, 1  is hyperbolic, and

R - r I > sup r.. Then IfED (B(OR):U.*f=O VjI = {o}.
j 3 3

Proof: Due to the condition on R we can assume

f E C (B(O,R)) as done before. The proof that leads to (32)

can be repeated almost verbatim just using for each X k , zero of

U1 a convenient Mj (j>2) with p (ik) 0. We obtain

(47) Tk* f(x) = 0 for IxI R - r1 - sup rj

where T s(t) = i1 (t) (t 2-X ) - s , s 4 mk ,  mk

multiplicity of Ak  as a root of 1I"

On the other hand

I
2 s

(48) (2) (A+Xk) (T 'f) U *f = 0 in B(0,R-r ),

therefore, T k,s*f is real analytic, and hence
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(49) Tk *f 0 in B(O,R-r ),

as before. It is at this point we have to be more careful to

i•  prove the correct version of Proposition 2. It will be replaced

i by the following:

Lemma 13 Let A = {Ak} = set of distinct zeros of j1, then

A U A., where the A. are finite and mutually disjoint
j=0

sets. There is also a positive integer q such that for any

p, 0 < p < we can write

I
(50) o = V + Sj

where v, S are radial distributions satisfying

(51) supp V C B(O,r ) andI 1

(52) supp SpC B(0, Max(r I ,p)-r ).

I
Furthermore,

(5 3 ) V V P F ,
j=0

a convergent series in E ( ), each V a finite linearI0 P,J
combination of the distributions Tk , Ak E A , 1 4 s 4 mk (if

m 0 1 then one denotes by A q V not only a finite linear

combination of Aq Tk,s' xk E A but also of

T s, AT 0  ,..,q-1T .)i 0 0.0

3.28



I

Once this lemma has been proved, the proof of Theorem 12 is

achieved the same way as it was done in Proposition 4 and we note

that the hypotheses imply 2r1 < R.

I Proof of Lemma 13 The proof of this lemma proceeds as in

Proposition 2 by interpolating the values of a on the variety

of zeros of 1 1 (counted with multiplicities). We have to

repeat with due care the procedure used in (13], [15), (18] since

we need the precise statement (51), (52), and (53).

First we note that as in [5, lemma 4] (cf. also [11, p.

501), the condition of hyperbolicity and the minimum modulus

theorem allow us to construct a family of a Jordan quadrilaterals

r k' k E z symmetric with respect to the real axis and enjoying

m the following properties:

(54) for some d > 0 the horizontal sides lie on the curves

I Im z = ± log(d+lRez 1),
I

and the vertical sides are arcs of circles.I
(55) 0 E int r which is symmetric with respect to the origin

I (i.e. if z E r then -z E r also).
0 0

(56) for k # o, rk is the symmetric of rk with respect to

m the origin.
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(57) for j V k, int rg fl int rk - , furthermore, for some

positive number a we have that if z E ri,

dist(z,r ) (a+lzj) for any k V j.

(58) for some positive constant b we have:

diam r. b(l+IzI)b

and

Ib
length r. ( b (1+Jzl)b

for any z E int r., any j.
I

(59) there is a constant c > 0 such that for any j, and any

z E r. we haveII
i' 1 (z)1 > (c+Izl) - c ,

* and this inequality is valid even for those z such that

dist(zr.) 4 1/2 (a+Iz) - a (the same a as in (57))

I (61) for some d > 0: if J ) 1, z E ri, then IZI ) J/d.

(62) A° - A int r o  Aj - A (int r n int r_) j 1.

I
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For the sake of definiteness we will index the points in A so

that A = 0, and, for k ) I, either Re I > 0 or ReA - 0I A

and Im Ak > 0, and, finally, A-k = -A k

Now consider the even entire function

I t2q -

(63) f(t) = 2 ; (t),

for q a positive integer to be chosen conveniently later on.

We note that if t int r. U int r. then

(64) pt) f as (s) d' 1 f ) ds

() 2i r f(s) s-t 2zi r f(s) s-tr. r.-

(where we disregard the second term if j = 0) is an even

* function which is a linear combination of terms of the form

(t -X )-S for Ak  E A and 1 4 s 4 mk if k ; 1,

1 s m me + 2q if k = 0. Hence *j can be defined as a

rational function throughout C and the function f(t) 0.(t) is
an even entire function. We want to show now that q can be

m chosen so that

(65) g(t) . f(t) * (t)m j-0j

is in E (R) and the series converges in the topology ofm -, 0

E (Rn).

In fact, we have that for Iir ti 4 log(d+jRetj) there is

some P U 0 such that
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(66, I (t)l C C(p) (l,+Itl)N

I
and also

I |(67) I 1 (W~ 'C Co0(1+ ltl)N.

Therefore, for some N I > 0 sufficiently large, if

dist(t, int r. U int r .) ; 1 we have by (66), (59) and (58),

that with respect to an arbitrary point z E int r., which we

* can take it to be the point in the positive real axis closest to

the origin,I
IfI(W 4 (Nl1 lZl) lzl - 2q  C const. - 2

by (61) (just take 2q ) N 1 + 2). Therefore, under the same

condition on t we haveI
-2 N rjI Jmtl

(68) If(t) f (t)l 4 c I  j 2 (1+ tl) e

Using the condition (58) on the diameter of r. and (67), this)

estimate remains valid throughout C, after possibly increasingI , n
C1, M. This shows that the v E E (R ) defined by

p 0I
V P (t) - g(t)

satisfies (51). It is also clear that the distributions vP#J

such that t2q v = f(t) J(t) have the properties required

I
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by (53) (with special care taken if m 0 0). To end the proof0

of the lemma we only have to show that g(t) - a P(t) is

divisibly by tj1 (t), the rest is the same as in Proposition 2.

Note that if t E int r U int r then we have

(t)1 a(s) ds
) r r f(s) S-t

is holomorphic and, we pick a new residue at s = t yieldingI
f(t) *.(t) = f(t) . (t) + o(t).
I) )

This concludes the proof of Lemma 13 and Theorem 12. 0

We give here the local version of Delsarte's theorem for

harmonic functions.

Corollary 14 Let H = {/n:E/nE(O,.-), ( ) = -a (In)=1. IfIn 1 1

R > r, + r2 , rj/r 2  Hn , and u is a continuous function in

i B(O,R) satisfying

U(X) = r (u,x), for all x, IxI < R - r

II and

u(x) - Ar (ux), for all x, Ixi < R - r ,

then u is harmonic in B(O,R).

Proof, From the asymptotic development of the Bessel functions

and the formula (10), it follows that the radial distributions U
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defined by

I 3 t) = t 2(a0-6)(t) = (a (t)-l)/t 2

are hyperbolic. The hypothesis on r1 /r 2  guarantees these two

entire functions have no common zeros. Theorem 13 shows now that

I the distribution Au is zero in B(O,R).

Remark As mentioned in (20], Delsarte proved this theorem in Rn.

He also showed that Hn is finite and H3 = {i}. Hence, at least

for dimension 3, any pair of distinct positive value ri , r2

would work in the above corollary.

The several other results in [20] can now be carried over to

the local case without difficulty. It remains as an open

question for the moment the elimination of the invertibility

m condition on VI' which could probably be done following the

Euclidean summation method of 16]. More interesting, in our view,

is to try to extend this theorem to non-compact symmetric spaces

of rank I or even to the Euclidean group thus obtaining a local

version of the Pompeiu problem considered in [9].

I As an example of this let us mention the following

corollary of Theorem 13.

Corollary 15 Let R > in a, if f E LI  (E(,R)) has zero

integral over any n-cube of side a contained in B(0,R), then

f - 0 a..

Proof Following the ideas from (9] we see we can consider all

radial distributions p whose Fourier tranforms are of the form
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(69) 0 XQ(kC)T(kC) dk ; a(C)

O(n)

where Q is the cube [-a/2,a/2]n and T is a distribution of

compact support in the ball B(O,C), C + in a < R. Then, for any

such P, cv(Suppu) B(0,r), and f will satisfy the

equations:I
V * f = 0 in B(0,R-r).I

Iince this set of distributions generates the same closed ideal

in E (R ) as those are considered in [9, p. 6021, then their

Fourier tranforms have no common zeros [9, section 91. It only

remains to find a distribution that plays the role of u in

Theorem 13. The easiest one is obtained when

I a2n x

2 2
ax 1...ax

An easy computation shows that in this case, for

2n X

1j = average over o(u) of 2 . . 
2n  , we have

ax 1 .0.ax 0 wehv

(70) 1 ~(n/2)+1l ( a~2
(70) 1 (t) = const. t n  3n-2

2

which is clearly hyperbolic. (For n - 2, this can be obtained

from Soniie second finite integral [19, p.3761.)

I
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1. Introduction.

The prototype of the Pompelu transform and of the problems we will

consider here is the Two-Disks problem we discuss presently. Let E be the

collection of positive quotients of zeros of the Bessel function J I This

countable set is precisely the exceptional set for the following theorem

I (proved independently in [12] and [21]).

Theorem. Let rlr 2 > 0. rl/r 2 E E. Then a continuous function In the plane

is identically zero if and only if all its averages over any disk of radius

I either r1 or r2 vanish.

U If we let XV.2  be the characteristic functions of the disks B(0.r

B(O,r 2 ) we are saying that the map

(1.1) P : f -(ZIl ',2 f)

is injective. In [7], (81 it was shown that a stronger arithmetical condition

was necessary and sufficient for the existence (and the explicit construction)

of two distributions v iV V2 of compact support such that

I (1.2) u1.(X1 of) +V 2.( 2 of) = f.

I Because vl,2 might be distributions (the map P Is smoothing), it is mort,

natural to consider P in the Frechet space 0 = 2) of Co functions.

Then we have that rI/r 2 # E if and only if

P : C-4_C2

is injectIve. The existence of vI, L 2  solving (1.2) is equivalent to Im P

being closed, hence P Is right invertible. One can in this case also show

that

(1.3) Im P = {(gh) e (MIR2)) 2 = PI sh)
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* and

P I M P9-+

(g.h) P - 1 g + V2,h.

U The exact arithmetical condition Is Just the existence of a constant

SA > 0 such that

(1.4) Ir /r - /.qI ? 1 -A
1 2

for any pair g,n > 0, J( ) = J1 (7)) = 0.

I Since (1.2) is an explicit deconvolution formula, L. Zalcman asked in

(20] whether some sort of explicit reconstruction formula would also exist

under the sole condition rl/r 2 * E. The theorem below answers this question

in the affirmative. Naturally coupled to this question is the following local

problem. Suppose we know the averages of f on disks of radii r1 and r2 .

only when those disks lie in some fixed disk B(O,R), could these data deter-

mine f in B(O,R)? A priori, formula (1.2), if valid, would only determine

f in B(O,R') for some convenient R' < R. This is Just a consequence of

3 the fact that (1.2) is given by convolutions, and v lu 2 do not have

support at the origin. This is the nature of what was called elsewhere the

local Pompeiu problem. It is shown in 121 that if rI +r2 < R, rI/r 2 g E,

then f is determined in the whole disk B(O,R) by those local averages. We

will show here that one has even a local reconstruction formula.

I These local theorems are also valid for other sets instead of disks, when

one takes all rigid motions. The injectivity was shown in (31. We give here

a method to construct a local inverse In this more general situation.

Finally, we would like to mention that even for the injectivity question

2
in P it is very hard to see when one can work Just with translations of a

I
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I finite family of sets. The antecedent of several such results Is the Three-

Squares Theorem [S) where it is shown that if the averages of a continuous

function f in the plane vanish on every square of sides either r 1,r2  or

r (with sides parallel to the axes), then f is identically zero if and

only if r1 , r2 ,r3 are 0-linearly independent. In [8], [9], explicit decon-

U volution formulas were found for this case under extra arithmetical assump-

tions on the triple r1Vr 2, r3. The local version of the Three-Squares Theorem

requires that we place ourselves in a square of side R. In [41 It is shown

that if R > r1 +r 2 +r 3, then the uniqueness still holds. Its proof is

akin to the methods used in this paper.

I The motivation for this work lies in trying to find an algorithmic decon-

volution approach (with due care for error bounds and noise behavior) in a

situation where part of the scene is obstructed from our view but the object

we are looking for lies very close to this obstruction. In the case of the

Radon transform this is sometimes called the Hole problem or the Bagel problem

(15]. It is interesting to note that these two problems are related, since

one way to find an inversion formula is to use Cormack-Quinto's Spherical

Radon Transform and its explicit inverse.

2. Preliminaries.

We recall some notation and basic properties of the Pompeiu transform.

Let E1,...,EN be a collection of compact sets in Fn of positive measure

and let M(n) be the group of Euclidean motions in Pn, then the (global)

Pompeiu transform (associated to E1,. .... EN ) is the map [101

(2.1) P : C(Pn)--C(M(n))N
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I
given by

I(2.2) WHO(g = rigE Ifdx,... ...J fdx].
1 SEN

Given an open set U a F n we can define open sets Gj r M(n) by

(2.3) Gj = (g e M(n) : gE • U}

(these sets could be empty). We define the local Pompelu transform

N
(2.4) P : C(U)--4 D C(G

J=1

defined exactly by the same formula (2.2). The family El...., EN  is said to

have the Pompeiu property (respectively, the local Pompelu property *with

I respect to U) whenever the map (2.1) (respectively (2.4)) is injective. The

most interesting case is the case of a single set with relatively nice

boundary. One can prove the following theorem.

I Theorem 1 [1], [61. Let [ be an open bounded set in Pn, E = i, E

connected and aE Lipschitz. Then E (or f[) has the Pompelu property if

and only if there is no positive eigenvalue for the overdetermined Neumann

* problem

n+au = 0 in [

I(N) 0Uo, u = I in ag.

As a corollary, one obtains two classes of examples:

(1) A single ball never has the Pompelu property;

U(2) A set [2 satisfying the hypotheses of Theorem I whose boundary is

not a real analytic hypersurface has the Pompelu property.

Examples of sets having the Pompelu property and also having real analy-

i tic boundary exist, for in.mtance, any ellipsoid which is not a ball. Since a
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single ball does not have the Pompelu property, the following theorem gives

the best possible answer.

Theorem 2 [12], (211. Let Z = J /7: > 0, q > 0, J n/2() = Jn/2() = 0).

A pair of balls B(O, r ), B(O,r 2 ) has the Pompelu property if and only if

r I r 2  * Z .*l °2
To consider the local Pompeiu property it is clear we have to start with

a family that satisfies the global Pompelu property. We restrict ourselves to

open sets U that can be covered by balls of a fixed radius R. In this case

we might as well suppose that U is the ball B(O,R). In this setting it is

easy to state the local version of Theorem 2.

Theorem 3 121. Let rl,r 2 > 0, r /r2 9 zn and R > rI +r . Then the pair

B(O,rI ),B(O,r 2 ) has the local Pompeiu property with respect to the ball

B(O,R). Under the additional restriction that rI/r 2  is badly approximated by

elements of Zn, the condition R > rI  r2  is also necessary.

It is quite possible that R > rI +r 2  is always a necessary condition

in Theorem 3. When considering a single set E having the global Pompeiu

property, in order to decide whether E has the local Pompeiu property with

respect to B(O,R), it is natural to try to measure R against a value r

such that E 9 B(xo r) for some xO. The condition that replaces rI +r2 <

R is 2r < R. We are compelled to introduce an extra technical condition due

to the fact that we know nothing about E. This condition, which we will

explain below, is called hyperbolicity. There are a number of simple condi-

tions that imply it (see (3]). for instance,

(1) Near an extreme point xI. xI E E n aBxo r), E coincides with a

polyhedral angle with vertex x1. The fact that the walls or edges are

straight plays no role. For instance, E Is a cube in n .

(2) There is an extreme point xl, xI a E n B(xovr), such that x1  is
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1
C3I a point of strict convexity for BE and BE Is of class C3 near x.

(3) In P2, near a point x,, xI * E n 8B(xor), BE is a Jordan

curve, sufficiently smooth.

Theorem 4 13]. Assume E S B(xO r) has a hyperbolic point

xI e E n B(xo r). Assume further that E has the global Pompelu property

and 2r < R. Then E has the local Pompelu property with respect to 13(0,R).

We remark that the conditions r +r 2 < R in Theorem 3 and the corres-

ponding 2r < R in Theorem 4 mean that the open sets G. (respectively g)

of M(n) are not to small. On the other hand, they impose no restriction.

when U is the complement of a closed convex set K. This is akin to say

that the Pompelu transform possesses the Hole property, as is the case for the

Radon transform (in that case K must be compact).

The proofs of Theorems 1 and 4 depend on the introduction of a countable

family of radial distributions associated to the set E. For that purpose we

need to introduce the concept of the radialized version of a distribution (or

circular symmetrization) with respect to a point xO. Namely, let T E 7 Y(R
n)

then RxoT = RT is defined by

(2.5) <RxoT, = <T(x), fSO (k(x-x0 )+X0 )dk>,

SO(n)

where 0 E D(Pn), dk is the Haar measure on SO(n). In case T E' E a

compact set in P , then RxoT is a function of compact support with values

in (0,1] which is a radial function with respect to x0, R oT(x)

(2.6) 9 (t) = o-(E n aB(xo, t)).

where o' Is the normalized surface area. We consider p as a radial Borel

n
function in R, of compact support, and therefore its Fourier transform Y
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i Is an entire function in Cn In the Paley-Wiener class, which Is radial,

I.e., If we let

(2.7) *(() = ( ... 0)

i then 9 is an entire function in C, even, satisfying the inequality

3 (2.8) 1O(C)I 5 A exp(rIIm CI).

whenever E B(xO,r). In fact, 0 is the Fourier-Bessel transform of the

radial function V

I( ) = (2n)n/2 [(t) J(n_2 )/2(Ctltn-ld£,

I0
where jt(z) = Jt(z)/z , Jt being the Bessel function of order t. We also

denote 9 = 0 . Conversely, 0 determines Y by

nI n

3 The smallest r which appears in (2.8) determines the smallest disk of center. 0

x0  such that E 9 B(xo, r). We call exterior radius of E, r = r (E), the

I minimum value of r, with respect to all x0, such that this inclusion

holds.

For fixed x0 and any a e IN, we can construct a corresponding entire

function of one complex variable 90 by

(2.11) 0 (C) := ( (DacE))~(<).
a x0

i whre D alal

where D . It is convenient to introduce the distributions pi =

A x° ZEP which are radial with respect to xO. These definitions are

justified by the following.

3 Lemma 4 [121. E has the global Pompelu property If and only If the functions
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I f ea in, have no common zeros.

An even entire function * of a complex variable is said to be hyvr-

bolic if the following three conditions are satisfied.

I (I) For some constant A > 0, It satisfies the estimate

I IV()1 A(lICI) Aexp(Allm CM).

(i) For some constant a > 0 and any real value C

maxflW +)l In1 : a log(2eI1l)) ? (a+iEI) -a

(iiI) For some constant c > 0 we have that

S0(t) = 0 r Ilm (1 c log(2+l<l).

The first condition is simply that 0 E S(I'(i)). The second is usually

called Invertibillty. it means that the principal ideal I (6'(I)) is closed.

It coiiicides with the property that *R(C) A t(&'( )) (C'(M)). The third

one says that all the zeros of t are almost real.

In 13], it is shown that a number of natural conditions on E imply that

30' the radialized function of XE, is hyperbolic.

The idea of Lemma 4, and a fortiori Theorems I and 4, Is that everything

is reduced to the study of the radial case, as follows. Let us fix xO ,

3 which we take to be the origin for simplicity. Then the condition

JI fdx = 0 V g E M(n) (or V g E G)

I gE

can be rewritten as an infinite system of convolution equations

(2.12) V p e SO(n): XpEef(x) = 0 V x e In (or 1x1 < R- r).

The proof of the injectivity of the (local) Pompeiu transform is based on

Uthe principle that If there is a non-zero solution of (2.12). we can assume it

1 4.8
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Ito be C" and show there must be a non-zero radial Cm function a in n

(respectively in B(OR)) solution of the denumerable system of convolution

equations

I (2.13) V a f IN n  ig(x) = 0 V x E n  (or xl <R-r).

where the pa are the distributions defined in (2.11). In particular, they

Involve derivatives (see [12), [3] for the details).

I In order to find an inversion formula for the local Pompclu tr'ansform we,

must make this principle a bit more precise. This depends on the following

lemma.

I Lemma 5. Let E 9 B(O.r) and U = B(O,R), R > 2r. Then for every x such

that xi < R-r, a E 1N, and any f E C(B(O,R)) we have

(2.14) P .f(x) = <6 (a) (y),P(f) - x-ky >dk,
S in)

where M(n) is considered as the group of (n+l)x(n+]) matrices of the form

k 1, k E SO(n), x E n  and in is identified to the affine subspaceI~ 10

{x = 1} of In+l
n+]

Proof. The identity (2. 14) is an easy computation and the only thing to

verify is that for xi < R-r, the image of E by k x-ky is con-

(a)
tained in B(O,R) (recall that supp 6 (y) = {O}). This is evident since

I (-k- )E c B(O,r). Hence, translation by x keeps It inside B(O,R).

Given a compact set E, let E = (x+T : x E } the translate of E

by T E Fn
. Consider the functions

C (t) (RxE ) (t).

l It is easy to see they are real analytic with respect to the parameter T. In

I 4.9



analogy with Lemma 4 we have

Lemma 4'. E has the global Pompelu property If and only if there Is an open

set 1 9 P such that the family of functions 4( ) has no common zero.

Another minor technical lemma will be useful to us.

Lemma 6. Let P be a homogeneous harmonic polynomial of degree k and p

the normalized measure on the sphere OB(Op) (0 < p), considered as a

radial distribution in Pin. Then, with lxi = r, we have

(2.15) P(x)o- (r) (- k P 2 --- } ( 2 _-xI 2 )k-1B( O,p)xU p P-x}lp!rn 2k-nl k-i)' n

n/2 nwhere £1 = 2n /r(n/2) is the surface of the unit sphere in P
n

Proof. If we consider the Fourier transform of P(x)a (r), we have

9 (P W o- (r))(() P .. I JOr(C)

(n)2 r(-)p [a)2 2

where j (z) = J (z)z- u . We can now apply an identity from 116, p. 126) toI)
obtain

U Prb( 2e*2) 1 a()( k kP

k 2k 22
(-1) p P()j(n/2)k- (p . .(

2 2

On the other hand, the function jn/2 +k(p l - is the Fourier

transform of a rather simple function. Namely, if t I 1,I J(P2-x1 2l)k-z -x~iX×.

1B(Op) We i dx
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I (2 )/2 (2r 2)k (rt)rn/2 r
t(n-2)/2 (n-2)/2

I n/2 p(n/2)+2k-I 1
t(2 n) (n-2)/2 J(1-s2 ki (n-2)/2 (pts)s ds

(2)n/2 2k- -I- ) pn+2k-2 k (pt),

as can be seen from 114, p. 688, formula 6.567.1). Hence If we let

T(x) = T p, (X) = (p2 1x 2 )k-lXB(O,p)(W,

*we have

we h a ek k r (n/2 ) 2-n
g(P(x)o- (r))(<) = (-1)k ffn/2k pk - p()T()

P2 (k-l)!

k r(n/2)p2-n J r](-1 }(P Ti-i )

it n/2 2(k-)! Iax

*Therefore

P(x)o (r) = (-) 2-npkrT
P D n 2 (k-l).!

which is the formula (2.15). 0

In what follows we will need to determine the radial distribution in R

P = Pn,k,a,p' that has as Fourier-Bessel transform

2 2
(2.16) j(t) j (n/2)+k-I (pt)/(t -a

where a is a zero of the numerator. It is easy to find the even function

in R whose Fourier transform coincides with p. Therefore, what we need is

to have a systematic way of obtaining p from i. In fact, this type of

relation underlies all the proofs about the local properties of the Pompeiu
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m transform.
We have the following setup. Let (,n) be the space of radiftl distri-

butions in Pn and (W'(R)n)^ the space of entire functions in the Paley-
0

Wiener class which are radial when restricted to Pn. Then, if 5n denotes

the Fourier transform in i, 12 the Fourier-Bessel transform in Pn, we

m have

(2.n17) n n
0 0

Bn  n Sjz

nn

m '(R) -

where SF(t) = F(tO,...,O) (= F(C) for any E C such that

2 2 t), S-i f( + 2 The isomorphism B = B isIn I n~ n
defined by the commutative diagram and it is called a transmutation operator.

We remark that B is an isomorphism of convolution algebras, as such it has

been originally studied by Bochner, Leray, Levitan I(1], 117].

It is easier to find first B explicitly. Namely, let p be a smooth

n 2 2
radial function of compact support in BR, then if r = x1 +...+x n

I9 n (t) = c e lxdx 0. . . j Dr )dx 2-dxn
-w -0 -w

I Comparing with the above diagram we see immediately that

I q(x) B-x) = ... 4 p(r)dx2 .. dxn

*O 
- M - O

JV( X+Y )yndy

I.. 2 0) to I

I 4. 12
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_____ (n r/ ()~ 2_ 2 (n-3)/2 s

r(T) I~~sss- s

We introduce a change of variable, so that

(n-])/2 P (AS)(s2_X2 )(n- 3 )/2ds.
l(X) 2 -) 1x2

Let V(xI) = (x2). I then

OM =it (1/ rs Sv) (n-3)}/2 ds

I ____

To invert this expression, we distinguish two cases. First, the case n is

odd, n = 21+ 1, f ? 1. Then

I .)

* Hence

(2.18) i(s) = B2 t+ 1)s) = [l 1  __]p~ s = B t + 1jP ( S Vx a x ] x =s 2

The case of n = 21, t ? 1, is a bit harder. First we find, using Laplace

transforms, that

"('/; I [_ dv )[v(t-v)-1/2t )dtJ

Returning to the original function i' we get

I(2.19) P()= (B2 q)s = L L qjjJ(T 2_X2 )1/2 f()TdT]"2 ) S t (- 2x dx (lx 2 ) X=S

We can now apply these formulas to find the distributions I =
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defined by (2.16).

Let v n - . 1/c : 2u"vir(u,+), then

-2u [ -Its 2 2 v-(1/2)(S.

Ju(pt) = CuP J e (p2-s2)'s

-p

Hence, If j (pa) = 0, we rewrite

ju (Pt) _ 1 J (pt) J (Pt)

2 2 2 L - t+ '

t -a-

iv (p t )  -2v ,e -it e -I _2 v (l,'2)

t-a - UP t-a (p2s ds,

and

j (pt)_ -2 e ~e (p 2 -s 2  
)ds.t+a Vu t+a

-p

Therefore

ju (pt) CuP its
t__2 - 2 e e , (s)ds,
t 2_a 2  2a v

where ,u (s) is the even function which, for s 0 0, is given by

(2.20) ',V (s) = 2J4'sin a(s-u)(p 2-u2 v-(1/2) du.

To find p we apply the transmutation operator B to tle functionn

-2ucuVP

X,u - 2a a=,u

For instance, for n = 2,

(2.21)

it - 2 2- I/2 2) k-(1/2)
'2,k.a,p~ ) 

- 2kn2 Z[Op Cr) -r (1-) cos

4. 14
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Finally, we recall a simple property of the Bessel functions.

Lemma 7. Let a1,a 2. a3 > 0 and m Z Let

e(z) = J n/2(alZ)Jn/2 (a2 z)J(n/2 ),m-1 (a3z).

Then there are constants L M. A M > 0, such that for any integer I a LTethr rcosnt m' Am in

there exists p, E ]2.t!tl so chosen that if either Iz = pt or lm zi >- 1

I then

-(]/2)(3n +12m) (al+a 2 a3 )llm zi

(2.22) lO(z)I A Izi e

Here n >- 2 is considered fixed throughout. If we are given 6 > 0 in such

a way that a. E (6,6- 1 then the constants A m,L can be made to depend

only on 6 and m. They actually become explicit in the proof.

Proof. The function 0 is an even entire function, therefore to prove (2.22)

I we can assume we have Re z a 0. In this case we can use the following asymp-

totic development of the Bessel function JJ (v ?t 1) (see 113])

w elIlm zl 142 2 1

(2.23) IJ (z) - /E cos(z- n (2.?+1)) < 3 e ' - e-pV Rz 4( 2 izl3/2 8 L 1zl "

Clearly, when IzI -> 14t 2 2_! we obtain

n 3e/ 2 e'Ilm zi
IJ (z) -Y/T cosIz - (2u+l))I <e - 142 _e 3/2

V z 2 IzI

On the other hand, if V = (211)n/2 f E Z}, d(z,V) = mln{l,dist(z,V)},

then the cosine satisfies th. Lojasiewicz inequality

izos zI a -d(z,V)ellm zl
we

Considering the expression (2.23) we see that we need to know hcw many zeros

does the product cos(a z- (n+l))cos(a z-IT(n+l))cos(a z- (n+2m-In has

2 43

4.15



In an interval [t.iI11; as we have at most &3#a2*a such zeros, we canx

find a value p t 1.+1( such that the distance from p, to any of these

zeros is at least 1 N Hence, on the circle IzJ = P we have2 n.ala 2+a3"

tcos(a min{l,a0i al(Im zI
Z-(n+l))l ! 2e(n.a1 +a2 +a3 ) e

On the other hand, If {lm zi ? 1, then If a = min{1),a

cos(a z- !(n+l)]l !> a , lm z1

1 4 we

that is, the previous inequality is valid both for Izi p and for Ilm z1

. Therefore, on every such circle as well as on Ilm zi I we have that

aalailm zi1In/ (alZ)1

n/2 1 1/22vr2 n1

if we assume Izi 3 (i a )2 The same kind of estimates hold for

the other two factors in 0. Let

(2.24) L = 3 e 2 (r+a,+a+a3)(n+2,)2/min 2 1a a a3m V ' '

then for t : Lm M. Iz= o for lm zi ? I, Izi L we have

a -an+l)/2 -In+l)/2 -((n+l)./2)-m aaa +a2a3)lm zi

(2.25) le(z)l > a1  2 31 2 3

(2e&'n(n4aj.a2+a3)J 3 Iz 1/2 (3n+2m+l)

R-arks. 1) The sequences pI depends both on the a and on m.

2) We do not really usc the full strength of the esilmate (2.23). It

would be enough to use Weber's estimates [19, § 7.33).

We conclude this preliminary section with upper bounds on the Besse]

functions, which depend on the fact that the order P is either an Integer or

half an integer. From [19, §2.2 and §3.321 we have for Re z > 0 and q an
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Integer t 0

Jq (Z) cos(qz sin e)dO

"0

-(z) = ([se ZCOS e) sin e dO.

where P Is the Legendre polynomial of degree q. From 114, 8.917) we knowq

that

IPq(COS e) s 1.

Therefore

(2.26) I {z)I e IJq ( ) l 1 / -zi /2e Ilm z1q q* (1/2 ) IT'

* q 
7,1/2

which has the advantage of being a global inequality, but loseF Izl and

Iz respectively, from the asymptotic expansions. This is a minor loss for

us, and we will use this estimate below.

3. Reconstruction of a function in the case of two disks.

Let Z {/) : > 0, n > 0, Jn/2 () = Jn/ 2((7 = 0). It is known that

if r1  > 0, r2 > 0 and r1 /'2  4 2 , then the Pomyn .iu transform

2 

n

: f i -- (X B (O ,r I) f,X B(O,r2 ) of )'1

is injective. Moreover, this condition on r /r2  is also necessary for the

Injectivity 112]. In case I/r2  is badly approximated by elements of Z ,

that is, in case there are constants c > 0, N > 0 such that
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p.(3.1)I-I
r2 i

one can construct explicitly distributions V, V2 with supp I  B(O.r2

supp V"2 B(O.r1), such that [(8

(3.2) XB(O,r I-V 1 + ) B(O,r )"2 =

Therefore, under the arithmetic assumption (3.1) any function (or distribu-

tion) f in Rn can be reconstructed from the knowledge of Its Pompeiu

transform Pf = (XWO, r,)f. 13(0, r2)f *f). This process (3.2) is known as

deconvolution. In case we only have a function f defined in a ball B(O.R).

with R > r 1 +r 2 , even if we use the deconvolvers vLVVU2' we will only be

able to reconstruct f in B(O,R-(r r 2)). For this reason, we will give a

different kind of explicit inversion process for this local problem. It turns

out that the arithmetic condition (3.1) will not be necessary, only rI/r 2 4

Z . In particular, this answers on the affirmative a question posed by

Zalcman 1211 for the case R = w. In fact, our procedure is basically a

method to approximate f with an estimate of the error. In this sense, we

are dealing with several possible procedures that depend on the way we want to

represent a given unknown signal f. For the sake of concreteness we will

describe this in detail when we represent f in terms of the Fourier expan-

sion in B(O,R) by spherical harmonics. In a forthcoming paper we will

explain the modifications necessary if one wants to usE- wavelets or the Radon

transform on spheres.

To begin, let us point out that if f is not Ca in B(O,R), then we

can first consider frC', supp V C 9 B(O,c), 0 < c c 1, and since Pf Is

given by convolutions we will have P(fC ) = Pff C. The first component of

Pf. O .r)f, is known in B(OR-rI ) hence that of P(faq ),
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IZB(O. r,)* fec, C will be known in B(O.R-c-rI). Similarly for the second

component. Hence, replacing R by R-c, and then taking c so small that

I R-c > r I +r 2, we can assume f is Cm

Given a function f * Cm (B(O,R)). we have a Fourier expansion of the

form

(3.3) fNx) = ( a mk (r Smk ML)] x =rw. W C Sn1I
m=O k1

where IS k} is an orthonormal basis (with respect to the normalizedI m,k k

measure of the unit sphere) of the spherical harmonics of degree m. That is,

r S (w) = H (x) is a harmonic homogeneous polynomial of degree m. TheI ~ m,kn-

dimension of the vector space Span4S m, k) is O(m n -2 ) [181. The

coefficients

a =(r f(rw)S ()do- ()
) Jsn-I m,k

satisfy an inequality of the form

N
lam,k (r)- < CN rNm

for any N > 0. Another way to write down this formula i; as the action of
-m

the distribution r o- Cx) on a smooth function
1 r

k( -m H ' -mH  k
(3.4) a Cr) = <r mo (x), (x)f(x)> = <r H (x)r (x).f(x)>m,k m ' k m,k

(1 )mr 2-n-m
2(-1)r <HM, k[ ]Tr, (1X1) f(x)>

2m (m-1)! Q
n

where, as given by Lemma 6,

Tr (lxi) C r2- lxi12m-1 Cx).
r,- B(O,r)
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I the idea now will be to write T as

Tr.m a8 10B(O,r1 ) g2*;B(O,r2

with control on the supports of g and g2 ' In this way we reduce the

problem to a decomposition of radial functions. We fix some notation first.

m Choose a strictly Increasing sequence of positive numbers -k with limit

R
i7__I__ 1, and a corresponding increasing sequence 

of rad II

Rk = (rI+r2 )(c k}, k > 1, R0 = 0.I
We want to decompose the radial distribution T , and th. decomposi-

tion will depend on the value k such that r E IRkI. RkI. We "ecall Lhat

the Fourier-Bessel transform of T is given by

r, (t)= (2n)n/22 m-1(m-)!r j(n/2)+m-I(t)

Proposition 8. Let r,r 2 > 0, rI/r 2 Zn , r1 +r 2 < R. {c } fixed as above.

For every r,m with Rk_ 5 r < Rk there are two sequences of .-adial dis-

tributions Pet whose Fourier-Bessel transforms satisfy

i(3.5) li(n/2)+m-1 (rz)- (jn/2 (r1Z) t (Z) + jn/2 (r 2 z)) I (z)

c' -(n/2)-m+(3/2) -(n/2)-m+(13/2) Rkllm zi

I <-r z e

for I >_ cm

I -(n/2)-m+(3/2) -m+2 (r;:+)3k)IIm z(3.6) bi (z) 1 <5 c"r 17 e

(3.7) 1t~ -1 c"r -(nl2)-m+(312)l1lzl11- m+2 e r+k)IZ1

I In this statement, we use the notation llzil = max{I,I,:I}, cc' being

strictly positive constants depending only on r1 ,r2, R,CI and n, while c"
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depends also on t and m. The quantity 0k denotes ck(rlr 2).

Proof. We are going to apply Lemma 7 with a1 I r1, a2  r2 ' a3  13k" The

corresponding value L < 3 e *(x+R)(n+2m) 2 We let q be an even

L, ~ 1 2 2I
I " - 4 k(rI~r2 )2

integer to be fixed later on. To simplify the notation w.2 denot, f(z) =

I (n/2)+m-1 (rz).

The idea of the proof is to profit from the simple fact

( ) if Izi < p,
(3.8) Jd f if Iz > p4

The usual method of interpolation theory consists in rewriting (:.8) as

folo ows

3-)f~z) q 1) W fZ ( q O q(z ) -)d<

I39 2qhiJ -zi j1(=P t <q0(<)

+ IzqeO(z) I f(C) d< for IzI <pi2lr2 q6 ( ) t:z

I and

(3.10) f(<-- qe(<) -z qO )) d

(3zf f) ___f_____d_

2__ O [z) fq) d< for Izi > p1.
2ni qJ

We define an even entire function H by

(311 [(Z f(<) (<qe(<)-zqO(z) )d<,
I(3.11l) He(z) 1 [ f() _ -z_____

t~~~~~ 2ni I=Pt <qE < -

I that is, the interpolation of f on the zeros of zqO(z. Note that Ht  Is

U 4.21



I
even Independently of the parity of the integer q; we took q even to

simplify the computations below, but this is not necessary.

We are going to show the family 4HI) &L is a bounded family in 6,'(F).

For that purpose we recall the upper bounds for f and 0 that we obtain

from (2.26),

(3.12) If(z)l 5 err-((n-3 )/2 )m Uz-((n-3)/2)-merlm z1

(3.13) IO(z)f - eRk(r r )-(n-1)/2 -((n-3)/2)-m Nz1[-( 3 (n-1)/2)-m+leRkIIm zi

We note that for n even these two estimates are too big by a power lizjl 1/2

and lizl 3/2 respectively. Also the constants er and , R car, be replacedI R2

by e . Choose I > cm 2/r 2 > L > 2, then for II = p we hav.;

II() -) - ((n-l)/2)-mp -(1/2)(3n+2m+l) eRkIlI M 1,

I where cI =.cl(rl,r 2R) Is given by

I(rlIr 2 )- (n + l )/ 2 m in f 1, r l r2 ,1k
) 3

(2ev'2-(n+R))3

For Izj > pI we can use (3.10) to estimate H We let q = n4 3 if n

is odd, q = n+4 if n is eN--n, then

{Hl~~~z) {  < r ( n - l) / 2 )+ m  -(n 3 / )- -l+ zlqlo(;,)l
-C2( r ~p2 zl-pl

<S cr-((n-3')/2)-m Iz1 -(n/2)-m+(1l/2) e kII ln zI

2 Izl-p'

Iwhere
e 2R r 2 k (2aV-n(1+R))

2 -1 _< c'(1)r2 24. c'( 2 2 r

I4.22



I
(we have taken into account here the fact that the upper estimate for 0 can

be Improved by Izi 3/2 when n a even). For IzI < pt we use (3.9), so that

-((n-3)/2)-m izljl-(n/2)-m ( 11/2) eR k l
I 
l m zI

I(3.14) IH I(Z)l 1-< If (Z)I+ c 2r PC lzl

These estimates are fine when IzI < t-1 or IzI -> t I, since then

SIzi -pt1 2 1. In this case we have

(3.15) IHl(z)I - 2 c~r((n-3)/2 )-m -(n/2)-m+(11/2) RilM ZI

In the remaining annulus, t- 1 5 IzI -< t+ 1, we can use the maximum prin-

ciple to obtain

i (3.6) It~z~ < cr-( n-3)/2)-m ll- (n/2)-m+ (1 l/2)eRkIZ l
(3.16) IH (Z) 1 S ii

The new constant c" is not substantially different from c'. and it is

independent of m since if m + n L2) <
2~~~ (ial2I &l)(n/2)+m-(II/2) < c3, independent of m since t _ cm /1 . The other

values of m are handled by the same reasoning. We conclude that {H } is

bounded in Exp (C) = (entire functions of exponential type). To conclude

that {H )t is bounded in i'(M) we need estimates on the real axis. From

(3.14) we know that if x E FI\[-1,t+2J then

(3.17) IHt(x) 5 2c~r-( (n-3)/2)-m x-(n/2)-m+(11/2)

As it was done in [21 we write

H(x) = HI(x)-Ht 3 (x +Ht+3(x).

hence, by (3.17), the last term satisfies the correct inequality when x E

[1-1,1+21, and we only need to estimate the difference (H -H 3(x). Let

rI be the Jordan curve which is the boundary of the region {Re z a 0,
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I S Iz' s P+3' I zI S 1) and rj its symmetric with respect to the

imaginary axis. They are chosen with a convenient choice of orientation so

that

(3.18) H (x)-H (x) 
=  r rqel(l q-x)

I t2qr, r

i For E r t and x e 11-1,1+21, we have

~qe (C)-x qe (x ) 1 - max Id(wqe(w
C-x lw-x I5 dw

I -< c6R (rr2-(n-1)/2 k((n-3)/2)-m x1-(n/2)-m+(ll/2)

by the same reasoning that led to (3. 16) the constant c' Is independent of

IM. For c e r and x 4 [t-l,t+2], we can use

C I qe(,)-xqO(x) 1  q Iq 6 (c) ( 4 Ixqe( x)I

< 2c~e6R (rrI -(n-1)/2 -((n-3)/2)-m -(n/2)-m+(11/2)I I

We conclude that for x E [t-l,t+2] we have

II (x) 1 _< c3r-(n-3)/2-m 1x11-(n/2)-m+(11/2)I
which is therefore valid everywhere. By applying the proof of the Phragmen-1 (/)m112 RkZH

Lindelof theorem to the function (z-)(n/2)m-(l/2) (z) on the

quadrant Re z k 0, Im z 2! 0 we see that

(3. 19) I it(Z) 1_5 c 4 r-((n-3)/2)-m lzI-(n/2)-m+(ll/2) eRklIm zI

where c4  is independent of m. This argument works in the other three quad-

rants. This shows that this sequence Il t)t Is bounded In 9'(P). Moreover,

we can show its limit is f and one can estimate the error by the previous

I 4.24
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I procedure.

If IzI < p formula (3.10) yields (see (3.14)):

-((n-3)/2)-m IlzlI-(n/2)-m*(11/2) eRkIl m z1

(3.20) IHI(z)-f(z) 1 5 c 2 r Ptlz e

c2 -((n-3)/2)-m -(n/2)-m4(13/2) RkIIm z1
:5 2-r- zII e

if Izi 1 /2. For Izi a V2 we have from (3.19) and the estimates for f

that

I (3.21) IHt(z)-f(z)1 iH(z)I + If(z)I

c 4  -((n-3)/2)-m -(n/2)-m+(13/2) RkIlm zI

ST rlzl e k

cI is Independent of m and bigger than 2c2 , hence the last estimate is

valid everywhere as stated in (3.5).

We can describe Pt and vI explicitly using the Residue Theorem. Let

us do it for the case the sequence (ck) has been chosen with the additional

requirement that the pairs jn/2(rjz) and j(n/2 )+m1 (k z) (j = 1,2) have

no common zeros. We note that if there were a common zero the multiplicity of

this zero for the product of the two functions would be exactly two and the

I formula below can be modified easily. From the definition of H we can

write for example when n is odd

n+3. n+3 (m-l (z)g 2 1(z)
HI(z) = Z Jn/ 2 (rIz)jn/2 (r2z)g3,1 (z) + z Jn/2 (r-1z)jn/ 2 )+m- (f3

+n+3n(r2. )J (n2 - (Ok z)g ,'t(z) + O(z)P(z),

IIwhere

(Z 
f(a) n/2 (rIz)

gl t~z  n+3. (ra~ (J, rn/(rla)(z-a)

' a n/2 2 (n/2)+m-1 k a /2

4n/2.(r2=
0

I 4.25



and analogous formulas for g2.1 and 93.t' P is the polynomial of degree

: n+2 (in fact, P must be an even function) given by

P(z) = Bes f(6 
.+)n 2

We define

n+3. n+3.

Vt(z) = z Jj(n/ 2 )+m~l- kZ)gIt (z) +P(z)j(n/ 2 )(rz)J(n/2 )1 m(3 kZ).

Hence

(3.22) HI(z) = At(Wjn/2(r1Z) + t I jn/2 (r2z ),

and the estimates (3.6) and (3.7) follow from the asymptotic estimates of the

Bessel functions. Even though we need to replace n +3 by n+ 4 in case

n is even, the estimates remain the same by the remark made after (3.13). D

The previous proposition leads to the following

Theorem 9. Let r1 ,r2 > 0, r1/r 2 9 Zn , r +r 2 < R, ic}k I  a strictly

R
increasing sequence of positive numbers with limit -- 1, R =rl~r2 k

(r +r )(1+c k ) (k 2 1), R0 = 0. For any r > 0, r E [Pk1',Rk[, and S a
1 2 k '

normalized spherical harmonic of degree m there are two sequences of

distributions J 1, of order : n. 3 with compact support in B(O,R-r
2

(respectively B(O,R-r 2)) such that for t cm and any function f in

SCO(B(O,R))

(3.23) is f(rw)S(w)doiw)-1J .XB(Q r of> - '1etXBO 2
isn-I 1'

< 1 (Rr)-N r- (n-3)/2 max Iaa f(x)l
- a :N xa
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2 21
where IN - ((n+13))J+1, R * -34R% and j> 0 Is a constant depending

on r 2 ,r 2 ,R,n,c I .

Proof. Let m - I and let H be the harmonic polynomial homogeneous of

degree m such that H(pw) = PSM(), WC Sn - , p > 0. From (3.4) we have

F 2-n-rn
f(rw)S(w)do(w) 2 r- <T(Ixl).H f(x)>.

in-2 
n

where T(lxl) (r2 -1x1 2 )m -i (x). We have seen that the Fourier-Bessel

=B(Or)

2-n-m
transform of r T(lxl) is given by

2 m1(m-l)! n

ti )2 (n-2)/2N n, m (rt)2tj J(nl2) m-1

We can apply Proposition 8 and find explicit radial distributions V with

supp P 5 B(O,Rk-rl), supp V 5 B(O,R-r 2 ) such that the radial distribution

Tt whose Fourier Bessel transform is given by

1,(z) = 2 (n-2)/
2r(n rn (rz)- rlz) e(z)-'E t (Z) 2 2)r mj(n/2)+m-1 Jr) n/2 (r - Z (n/2) (r ) z

satisfies

(n-3)/2 n/E)-m(13/R)eRkII 2
ITz(z) 1 5 zi r 211-e-(t 2 const. m

If we define the distributions

i (x) _(-I) r H 0
t r n T~t

9 t(x) =rn H( 11 VI(lxl)

then
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I

I' n-1f r)wdw)-< 1X(,ro>-< 1X( r2)o>aOUH f.

We will now estimate <ft, H 8)f >  using Plancherel's formula. Let 2pk

112
be a smooth radial function which is Identically one on the ball B(OI R42R

with support in B{(,5R+5Rk). One can find them in such a way that

ac (_k-q< -q
max I k(X)I :5 (R-I ) q (R-)-q

x, la=q ax

I The constants q are Independent of R and k. Then

I< I H TX I f> 1 = t a (Pkf)>, 1 5 n,(,,,l,((),lk f) ( ),d

U ~ ~ ~~ -(~n-3)/2[t (n/2)+(11/2)J Iw)(kfI I
0 is n-1

i' 7-n-)/ ISM I2do( ) max I (pkf ) (pw)ldp.
-- i[sn  , Sn-

I On the other hand

I (R-r)-  max I f(x)l,
k N IxlSR' axa

Ilti Nk

In+132 1

where N : 2 and : 2 R

This concludes the proof of Theorem 9 for m 0. For m = 0 everything

works the same way, except that T is now the normalized measure of the

I sphere of radius r, with Fourier-Bessel transform equal to j(n-2)/2 (rt) up

to a constant. o

The estimate (3.23) leaves us with a little problem for small values of
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r. In the case 0 : r < R- (r *r , we can use an explicit formula to

approximate 6 in the form

0 a XB(O,r 1)a ZB(O,r2 ) *a2'

a radial distributions of fixed order, supp a] I B(0,r 2), supp a2 r

m B(O.)r ) Hence we compute directly

f(x) a laIOZB(O,r )f] a2 .B(O, 2 ).f](x)

for 1x1 < R- (r 1+r ) the precise estimate of the error being of the form

as in (3.21) (without the dependence on r and R- r); we use as a function

m 0 just the product jn/2(r1 Z)jn/2(r 2z).

If we choose the sequence ck in Theorem 9 so that every zero of O(z) =

J/2(rIZ)jn/2(r2z)J(n/2)+ml (k z) is simple, the distributions M t, u , and a

.m fortiori V and 5 can be made completely explicit. We only need to know

the explicit form of a radial distribution whose Fourier-Bessel transform has

m the form

m(n/2)+m-1 (pz)
2 2 , (m )

z -a

m when a is a zero of j(n/2 )+m-l(Pz).

i These distributions have been computed in section 2; recall for example

J(n/2)+m-l 
(p t )

that when n =2, p m,ap(t) = t2 2 with

luOP(r) m 1 ] 0P (r) (-r_r2 )-1/2 (1-C2) -(112) cosa(x-pCld dT.

m ma p2 a O,p] ~-

m The sequence of' approximations for the Fourier coefficients

20 f(re )e ±imdo, m > 1, r E [RkI RkI can be written as
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I ('rmtB o.)f> +< ~.x(~ f N

I where

tr, . 2nr 2  (6±liyJ PtL~I1
I~~ 2(

I and

0' r2 
j m(ra)

r A3[(O.r25 . . fi
QOcp J3 ) (r a) j (r a) X(13 0ok

im(13 k )=Q

1 (1321.1 2 )m-I

+ 2m-I1) 1 2m ZB(O,13k

o<C~p ar A (r 10) j (13 k ) 1(r 2 0) 2]

I c 5 r j (r a) j (1 )j r a IJa

j(r I )=O

+ TA+ A2) X1(O,r1 ) k
2s 2nr 2 - (-B(O. t3k

The polynomnial S k*+T kz 2 +Uk z4 is defined as

k4 3



I

S k+T kz +UItZ 2 U Res rC Z 5 CZ 4+... +C5

COC C kI (rk 1j0 i (r 2( J .

I
4. Local inversion of the Pompelu transform for the case of a square.

In this section we will show how to reconstruct a function f defined In

the disk B = B(O,R) of R2 In terms of its averages over squares o, side

2a, with 2Vr2a < R. We will also see that this inversion procedure general-

izes to practically any set E with the Pompeiu property.

The idea is to reduce ourselves to the situation of the previous section.

Let Q be the square [-a,a]<[-aa], XQ its characteristic function. Then

(4.1) T Nay (a,a) (-a.a) (-a,-a) (a,-a)'

It is immediate that Y T = 0. On the other hand, this is not true for some

derivatives of T. We compute directly the Fourier-Bessel transform of

ka~ 2,J0 LT Let t be a positive number, choose < E I, I = t, and iden-

2
tify z = x+ iy with (x,y) E , then

0 k

-< T(z), (e- )>

azk 0z
ak

= z < j- T(Z),C-IzlItM 
>

ak

< < _kT z) Jo(tlzl)>

az

(-1) k<T(z),- 1J (tlzl)>
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(as shown In Lemma 6) t2k M ) ~ k(ll>

That Is,

k if k V 2 (mod 4)
(4.2) 15 0 .- T(t) = 1 allk (/4)k.k
( 4 Jk(4ta) if k E 2 (mod 4).

In particular,

(4.4) (t) = 1t J2j6 (v2at).

The two functions above have only the origin as a common zero of order

4, by a well known property of the Bessel functions (see (19, p. 485]). On

the other hand, the function ORQQ)_(0) * 0. If we use these three functions

with a reasoning similar to that in the last section we would need R > 312a

to obtain an inversion formula which will be even a bit more complicated. (We

will return to this point-below.) We sidestep this question by working onlyU2 6
with the radial distributions 7Z 2 T] and R( -_T) to first reconstruct

12
A bf. Namely, consider the two radial distributions pVP2  such that

I pl(t) = -ia2j2 (vr2at)

M2 (t) = J---t j6 (/2-at),

whose Fourier Bessel transforms have no common zeros and which are supported

in B(0,v2a). One can modify Lemma 7 by considering the function

G(t) = PI(t)P2 (t)jm(c2vrat),

with 0 < c < R-2Va. The inequality (2.22) is replaced by

I
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(4.5) le(z)l Z Izi-(1/2)(3*2m) 2A,(1.c)Il m zi

Whenever Izi P or 1Im zi k 1. 1 Z L;. for some VI,L' > 0.I m I

The proof of Theorem 9 furnishes distributions ii' such that for- any

function f e Cm (B(O,R))

I I
I L fire e)e-lmedo - <-

2n i i'lf zt"Pl.

< (R-r)-N max I f(z)I,

Ia N a xIaya2

I z 15R'

where, as before, the distributions U' depend also on r,m, have support

in B(R-Vfa), their order and the constant N do not depend on r or m;
I , = 2 1 a(+)

Rk has the same meaning as in Theorem 9, that is R k  2R+ I

Applying (4.6) to A 2f, we can compute its Fourier coefficients in

B(O,R) in terms of the functions fI = (9z0 2TJ].f and V2 = (O T]f

U in B(R-V~a), since = R0 f T and = 0 T). By Lemma 5, we

can compute the functions Vi,i2 in terms of the Pompeiu transform of f. In

other words, we can txplicitly recover the Fourier coefficients of A 2f in

I terms of P(f).

We need now to show how to compute the Fourier coufficients of f in

terms of P(f) and A 2f. This can be accomplished by observing that

(9zOQ)(0) = area(Q) = 4a
2

and that (9OQ) (z) has an asymptotic behavior of the same type as that of

the Besse] functions, as it was shown in 13, Section 61. Hence we can apply

the same procedure as above to the two radial distributions R0Q and 20
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and In this way, we can approximate the Fourier coefficients of f In B(O,R)

as closely as we want In terms of the "data" P(f).

Remark 1. The procedure for the local inversion of the Pompelu transform

associated to a square is valid for a very general class of domains having the

Pompeiu property. In fact, let E be a compact subset of Fn having the

global Pompelu property. Let us assume that for some base point x0, the

boundary of E contains a hyperbolic point p in the sense of 13,section

2]. One can assume that 8B(x0 , r) n E = 4p), where r = dist(xop) and

E L B(xo r). This is just a minimal regularity condition on the extremal

point p of E. By Proposition 5 in [31, we have that near the real axis we

have the asymptotic development

(4.7) (9X E)~(t) -- t cos(tr-u I

where vu1 are some positive constants related to the geometry of aE near

p. Outside a horizontal strip there is a corresponding good lower bound.

This behavior is the same as that of the Bessel functions.

Let ju be R xXE" If we assume that R > 3r, let c0 > 0 be such

that 3r + 3c 0 < R. For any : > 0 we can consider the set E which is the

translate of E along the unit direction XOP by c, then

(4.8) (9Z o Ec % t M - ot °  cos(t(r+c)-u])

since the only extremal point of EC of interest is just p+cXOP. It is

then immediate that we can choose c 5 co  so that P, and ( xXE have

only finitely many common zeros. Let us choose c; with such a property,

P2 = 9ZX0XEC, and z, .. 1 N the common zeros of i and 2' The argument

in [3,Proposition 51 shows that one cannot only translate along the ray xOP
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but even along a small open cone I with vertex 0 In such a way that the

translate of p remains the only extremal point in ET n 8B(xo ,IP-x0 I) for

T e . By Lemma 4' the corresponding functions 0T have no common zero if

[II c0 .

For each z we can choose distinct T such that ( x ) (z j) 0.

hence there is a linear combination of these finitely many functions which

will not vanish at any of the points zI .... zN. This linear combination 3

will automatically have a good asymptotic development. The radial distribu-

tions (with respect to x0 ) 11.12 P3 are supported by the balls B(xOr )

B(xolr2), (xor 3 ) respectively, r Ir 2 + r 3 < R and the method of the

previous section applies with small modifications. Lemma 7 allows us to com-

pute p jf in terms of P(f), in this way one obtains an inversion formula in

any ball of radius R > 3r.

Remark 2. In comparing the previous remark with the construction for the

square one notes that the construction for the square could be further simpli-
fled if we knew that ( OQ) and Y have no common zeros. Though
we believe this is true we have not been able to prove it.

I
I
I
I

I
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j CONCLUSIONS

We have demonstrated the feasibility of building

super-resolution systems using multiple detectors. The

deconvolution method provides a real time linear

implementation of the reconstruction problem which is robust

with respect to noise and perturbations of the overall

I system.

The next task that is starting to be carried out by

doctoral students of Dr. Berenstein's in Maryland, Drs. Gay

and Yger in Bordeaux, and Dr. Taylor in Michigan, is to

incorporate postprocessing features adequate for particular

I tasks. For instance, in many problems we need not only to

reconstruct the pixel by pixel values of signal to a desired

degree of resolution but also we need to automatically

identify it, e.g. using segmentations, Voronov diagrams, etc.

How to incorporate this image (post) processing into the

deconvolutions is the challenge.

Another thing that still remains to be implemented,

since it requires considerable manpower, is to write a user

friendly menu to design and simulate multidetector systems.

It is for this task we feel the newer completely numerical

I algorithm of finding deconvolvers might be most useful.

The local Pompeiu problem that "peeled-off" the

deconvolution problem presents new challenges. The nature of

the inversion formulas for Chapter 4, indicates that the

deconvolution and local deconvolution formulas must be well

I
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I adapted to implementation in terms of wavelets. If this were

the case, it will also help to produce a significant data

reduction and reduction of processing time in ATR and similar

i problems.

Finally, the purely algebraic problems of the size and

degree of solutions to the Bezout equation have applications

to robotics, control of distributed parameter systems,

computational geometry, etc., and they show the unexpected

payoffs of the use of the powerful methods of several complex

variables in applied mathematics.

I
U
I
I
I
I
I

* 5.1


